Spectrally arbitrary patterns over finite fields

被引:4
|
作者
Bodine, E. J. [2 ]
McDonald, J. J. [1 ]
机构
[1] Washington State Univ, Dept Math, Pullman, WA 99164 USA
[2] Cabrini Coll, Dept Math, Radnor, PA USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2012年 / 60卷 / 03期
关键词
zero-nonzero pattern; spectrally arbitrary; characteristic polynomial; finite field; ZERO-NONZERO PATTERNS; SIGN PATTERNS; MATRICES;
D O I
10.1080/03081087.2011.591395
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An n x n zero-nonzero pattern A is spectrally arbitrary over a field F provided that for each monic polynomial r(x) is an element of F[x] of degree n, there exists a matrix A over F with zero-nonzero pattern A such that the characteristic polynomial p(A)(x) r(x). In this article, we investigate several classes of zero-nonzero patterns over finite fields and algebraic extensions of Q. We prove that there are no spectrally arbitrary patterns over F-2 and show that the full 2 x 2 pattern is spectrally arbitrary over F if and only if F contains at least five elements. We explore an n x n pattern with precisely 2n nonzero entries that is spectrally arbitrary over finite fields F-q with q >= n(n+1)/2 + 1, as well as Q. We also investigate an interesting 3 x 3 pattern for which the algebraic structure of the finite field rather than just the size of the field is a critical factor in determining whether or not it is spectrally arbitrary. This pattern turns out to be spectrally arbitrary over Q(root-3).
引用
收藏
页码:285 / 299
页数:15
相关论文
共 50 条
  • [41] AN AXIOMATIZATION OF FINITE-DIMENSIONAL CARTESIAN SPACES OVER ARBITRARY ORDERED FIELDS
    GUPTA, HN
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1965, 13 (08): : 551 - &
  • [42] Multi-dimensional constacyclic codes of arbitrary length over finite fields
    Bhardwaj, Swati
    Raka, Madhu
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (04): : 1485 - 1498
  • [43] On Algorithms and Complexities of Cyclotomic Fast Fourier Transforms Over Arbitrary Finite Fields
    Wu, Xuebin
    Wang, Ying
    Yan, Zhiyuan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (03) : 1149 - 1158
  • [44] Building curves with arbitrary small MOV degree over finite prime fields
    Dupont, R
    Enge, A
    Morain, F
    JOURNAL OF CRYPTOLOGY, 2005, 18 (02) : 79 - 89
  • [45] COMPUTABILITY OVER ARBITRARY FIELDS
    HERMAN, GT
    ISARD, SD
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1970, 2 (5P1): : 73 - &
  • [46] COMPUTABILITY OVER ARBITRARY FIELDS
    HERMAN, GT
    ISARD, SD
    JOURNAL OF SYMBOLIC LOGIC, 1969, 34 (03) : 541 - &
  • [47] REFINED INERTIALLY AND SPECTRALLY ARBITRARY ZERO-NONZERO PATTERNS
    Deaett, L.
    Olesky, D. D.
    van den Driessche, P.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 449 - 467
  • [48] Potentially nilpotent and spectrally arbitrary even cycle sign patterns
    Bingham, B. D.
    Olesky, D. D.
    van den Driessche, P.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (01) : 24 - 44
  • [49] Spectrally arbitrary zero-nonzero patterns and field extensions
    McDonald, Judith J.
    Melvin, Timothy C.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 : 146 - 155
  • [50] Spectrally arbitrary zero-nonzero patterns of order 4
    Corpuz, L.
    McDonald, J. J.
    LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (03): : 249 - 273