Spectrally arbitrary zero-nonzero patterns and field extensions

被引:2
|
作者
McDonald, Judith J. [1 ]
Melvin, Timothy C. [2 ]
机构
[1] Washington State Univ, Dept Math & Stat, Pullman, WA 99164 USA
[2] Santa Rosa Jr Coll, Dept Math, Santa Rosa, CA 95401 USA
关键词
Spectrally arbitrary patterns; Field extensions; 2n conjecture; Superpattern conjecture; Hilbert's Nullstellensatz; SIGN PATTERNS;
D O I
10.1016/j.laa.2016.12.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An n x n matrix pattern is said to be spectrally arbitrary over a field F provided for every monic polynomial p(t) of degree n, with coefficients from F, there exists a matrix with entries from F, in the given pattern, that has characteristic polynomial p(t). Let E subset of F subset of K be an extension of fields. It is natural to ask whether a pattern that is spectrally arbitrary over F must also be spectrally arbitrary over E or K. In this article it is shown that if F is dense in K and K is a complete metric space, then any spectrally arbitrary or relaxed spectrally arbitrary pattern over F is relaxed spectrally arbitrary over K. It is also established that if E is an algebraically closed subfield of a field F, then any spectrally arbitrary pattern over F is spectrally arbitrary over E. The 2n Conjecture and the Superpattern Conjecture are explored over fields other than the real numbers. In particular, examples are provided to show that the Superpattern Conjecture is false over the field with 3 elements. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 155
页数:10
相关论文
共 50 条
  • [1] Complex spectrally arbitrary zero-nonzero patterns
    McDonald, J. J.
    Yielding, A. A.
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (01): : 11 - 26
  • [2] REFINED INERTIALLY AND SPECTRALLY ARBITRARY ZERO-NONZERO PATTERNS
    Deaett, L.
    Olesky, D. D.
    van den Driessche, P.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 449 - 467
  • [3] Spectrally arbitrary zero-nonzero patterns of order 4
    Corpuz, L.
    McDonald, J. J.
    LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (03): : 249 - 273
  • [4] Inertias of zero-nonzero patterns
    Kim, In-Jae
    McDonald, J. J.
    Olesky, D. D.
    Van Den Driessche, P.
    LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (03): : 229 - 238
  • [5] Inverse invariant zero-nonzero patterns
    Ma, Chao
    Zhan, Xingzhi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 : 184 - 190
  • [6] Integrally normalizable matrices and zero-nonzero patterns
    Garnett, C.
    Olesky, D. D.
    Shader, B. L.
    van den Driessche, P.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 449 : 132 - 153
  • [7] Three remarks on spectra of zero-nonzero patterns
    Shitov, Yaroslav
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 534 : 73 - 77
  • [8] Zero-nonzero tree patterns that allow Sn*
    Gan, Luyining
    Gao, Wei
    Han, Jie
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (22): : 7347 - 7369
  • [9] Zero-Nonzero Matrices
    Stong, Richard
    AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (06): : 526 - 526
  • [10] ZERO-NONZERO PATTERNS FOR NILPOTENT MATRICES OVER FINITE FIELDS
    Vander Meulen, Kevin N.
    Van Tuyl, Adam
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 628 - 648