Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D

被引:11
|
作者
Zheng, Ye [1 ]
Shen, Siqi [2 ]
Keles, Sunduz [2 ,3 ]
机构
[1] Fred Hutchinson Canc Ctr, Vaccine & Infect Dis Div, Seattle, WA USA
[2] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53705 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53705 USA
关键词
Single-cell Hi-C; Normalization and de-noising; Cell type separation; Compartment and domain recovery; Gene associating domains; 3D genome marker genes; CHROMATIN; DYNAMICS; GENOME;
D O I
10.1186/s13059-022-02774-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell high-throughput chromatin conformation capture methodologies (scHi-C) enable profiling of long-range genomic interactions. However, data from these technologies are prone to technical noise and biases that hinder downstream analysis. We develop a normalization approach, BandNorm, and a deep generative modeling framework, scVI-3D, to account for scHi-C specific biases. In benchmarking experiments, BandNorm yields leading performances in a time and memory efficient manner for cell-type separation, identification of interacting loci, and recovery of cell-type relationships, while scVI-3D exhibits advantages for rare cell types and under high sparsity scenarios. Application of BandNorm coupled with gene-associating domain analysis reveals scRNA-seq validated sub-cell type identification.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D
    Ye Zheng
    Siqi Shen
    Sündüz Keleş
    [J]. Genome Biology, 23
  • [2] Unsupervised embedding of single-cell Hi-C data
    Liu, Jie
    Lin, Dejun
    Yardimci, Galip Gurkan
    Noble, William Stafford
    [J]. BIOINFORMATICS, 2018, 34 (13) : 96 - 104
  • [3] Single-cell Hi-C data analysis: safety in numbers
    Galitsyna, Aleksandra A.
    Gelfand, Mikhail S.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [4] Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization
    Wolff, Joachim
    Rabbani, Leily
    Gilsbach, Ralf
    Richard, Gautier
    Manke, Thomas
    Backofen, Rolf
    Gruening, Bjoern A.
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) : W177 - W184
  • [5] Massively multiplex single-cell Hi-C
    Ramani, Vijay
    Deng, Xinxian
    Qiu, Ruolan
    Gunderson, Kevin L.
    Steemers, Frank J.
    Disteche, Christine M.
    Noble, William S.
    Duan, Zhijun
    Shendure, Jay
    [J]. NATURE METHODS, 2017, 14 (03) : 263 - +
  • [6] Massively multiplex single-cell Hi-C
    Ramani V.
    Deng X.
    Qiu R.
    Gunderson K.L.
    Steemers F.J.
    Disteche C.M.
    Noble W.S.
    Duan Z.
    Shendure J.
    [J]. Nature Methods, 2017, 14 (3) : 263 - 266
  • [7] Single-cell technologies meet Hi-C
    Hughes, Jim R.
    Davies, James O. J.
    [J]. NATURE GENETICS, 2024, : 1542 - 1543
  • [8] Scool: a new data storage format for single-cell Hi-C data
    Wolff, Joachim
    Abdennur, Nezar
    Backofen, Rolf
    Gruening, Bjorn
    [J]. BIOINFORMATICS, 2021, 37 (14) : 2053 - 2054
  • [9] GiniQC: a measure for quantifying noise in single-cell Hi-C data
    Horton, Connor A.
    Alver, Burak H.
    Park, Peter J.
    [J]. BIOINFORMATICS, 2020, 36 (09) : 2902 - 2904
  • [10] scHiCTools: A computational toolbox for analyzing single-cell Hi-C data
    Li, Xinjun
    Feng, Fan
    Pu, Hongxi
    Leung, Wai Yan
    Liu, Jie
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (05)