Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D

被引:11
|
作者
Zheng, Ye [1 ]
Shen, Siqi [2 ]
Keles, Sunduz [2 ,3 ]
机构
[1] Fred Hutchinson Canc Ctr, Vaccine & Infect Dis Div, Seattle, WA USA
[2] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53705 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53705 USA
关键词
Single-cell Hi-C; Normalization and de-noising; Cell type separation; Compartment and domain recovery; Gene associating domains; 3D genome marker genes; CHROMATIN; DYNAMICS; GENOME;
D O I
10.1186/s13059-022-02774-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell high-throughput chromatin conformation capture methodologies (scHi-C) enable profiling of long-range genomic interactions. However, data from these technologies are prone to technical noise and biases that hinder downstream analysis. We develop a normalization approach, BandNorm, and a deep generative modeling framework, scVI-3D, to account for scHi-C specific biases. In benchmarking experiments, BandNorm yields leading performances in a time and memory efficient manner for cell-type separation, identification of interacting loci, and recovery of cell-type relationships, while scVI-3D exhibits advantages for rare cell types and under high sparsity scenarios. Application of BandNorm coupled with gene-associating domain analysis reveals scRNA-seq validated sub-cell type identification.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data
    Miao Yu
    Armen Abnousi
    Yanxiao Zhang
    Guoqiang Li
    Lindsay Lee
    Ziyin Chen
    Rongxin Fang
    Taylor M. Lagler
    Yuchen Yang
    Jia Wen
    Quan Sun
    Yun Li
    Bing Ren
    Ming Hu
    [J]. Nature Methods, 2021, 18 : 1056 - 1059
  • [32] Perspectives for the reconstruction of 3D chromatin conformation using single cell Hi-C data
    Kos, Pavel I.
    Galitsyna, Aleksandra A.
    Ulianov, Sergey V.
    Gelfand, Mikhail S.
    Razin, Sergey V.
    Chertovich, Alexander V.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (11)
  • [33] SnapHiC-D: a computational pipeline to identify differential chromatin contacts from single-cell Hi-C data
    Lee, Lindsay
    Yu, Miao
    Li, Xiaoqi
    Zhu, Chenxu
    Zhang, Yanxiao
    Yu, Hongyu
    Chen, Ziyin
    Mishra, Shreya
    Ren, Bing
    Li, Yun
    Hu, Ming
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [34] Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    Nagano, Takashi
    Lubling, Yaniv
    Stevens, Tim J.
    Schoenfelder, Stefan
    Yaffe, Eitan
    Dean, Wendy
    Laue, Ernest D.
    Tanay, Amos
    Fraser, Peter
    [J]. NATURE, 2013, 502 (7469) : 59 - +
  • [35] Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    Takashi Nagano
    Yaniv Lubling
    Tim J. Stevens
    Stefan Schoenfelder
    Eitan Yaffe
    Wendy Dean
    Ernest D. Laue
    Amos Tanay
    Peter Fraser
    [J]. Nature, 2013, 502 : 59 - 64
  • [36] Author Correction: Multiscale and integrative single-cell Hi-C analysis with Higashi
    Ruochi Zhang
    Tianming Zhou
    Jian Ma
    [J]. Nature Biotechnology, 2022, 40 (3) : 432 - 432
  • [37] Bayesian Estimation of Three-Dimensional Chromosomal Structure from Single-Cell Hi-C Data
    Rosenthal, Michael
    Bryner, Darshan
    Huffer, Fred
    Evans, Shane
    Srivastava, Anuj
    Neretti, Nicola
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (11) : 1191 - 1202
  • [38] scHiCPTR: unsupervised pseudotime inference through dual graph refinement for single-cell Hi-C data
    Lyu, Hongqiang
    Liu, Erhu
    Wu, Zhifang
    Li, Yao
    Liu, Yuan
    Yin, Xiaoran
    [J]. BIOINFORMATICS, 2022, 38 (23) : 5151 - 5159
  • [39] ImputeHiFI: An Imputation Method for Multiplexed DNA FISH Data by Utilizing Single-Cell Hi-C and RNA FISH Data
    Fan, Shichen
    Dang, Dachang
    Gao, Lin
    Zhang, Shihua
    [J]. ADVANCED SCIENCE, 2024,
  • [40] Identifying TAD-like domains on single-cell Hi-C data by graph embedding and changepoint detection
    Liu, Erhu
    Lyu, Hongqiang
    Liu, Yuan
    Fu, Laiyi
    Cheng, Xiaoliang
    Yin, Xiaoran
    [J]. BIOINFORMATICS, 2024, 40 (03)