Proposed suitable electron reflector layer materials for thin-film CuIn1-xGaxSe2 solar cells

被引:27
|
作者
Sharbati, Samaneh [1 ]
Gharibshahian, Iman [1 ]
Orouji, Ali A. [1 ]
机构
[1] Semnan Univ, Dept Elect & Comp Engn, Semnan 3513119111, CO, Iran
关键词
Bandgap; Electron affinity; Electron reflector; Thin film CIGS solar cell; PERFORMANCE; EFFICIENCY; CIGS; BUFFER;
D O I
10.1016/j.optmat.2017.09.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates the electrical properties of electron reflector layer to survey materials as an electron reflector (ER) for chalcopyrite CuInGaSe solar cells. The purpose is optimizing the conduction band and valence-band offsets at ER layer/CIGS junction that can effectively reduce the electron recombination near the back contact. In this work, an initial device model based on an experimental solar cell is established, then the properties of a solar cell with electron reflector layer are physically analyzed. The electron reflector layer numerically applied to baseline model of thin-film CIGS cell fabricated by ZSW (efficiency = 203%). The improvement of efficiency is achievable by electron reflector layer materials with Eg > 1.3 eV and -0.3 < Delta chi < 0.7, depends on bandgap. Our simulations examine various electron reflector layer materials and conclude the most suitable electron reflector layer for this real CIGS solar cells. ZnSnP2, CdSiAS(2), GaAs, CdTe, Cu2ZnSnS4, InP, CuO, Pb10Ag3Sb11S28, Culn(5)S(8), SnS, PbCuSbS3, Cu3AsS4 as well as CuIn1-xGaxSe (x > 0.5) are efficient electron reflector layer materials, so the potential improvement in efficiency obtained relative gain of 5%. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 223
页数:8
相关论文
共 50 条
  • [1] Thin-film ZnO/CdS/CuIn1-xGaxSe2 solar cells:: Anomalous physical properties of the CuIn1-xGaxSe2 absorber
    Persson, Clas
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (3B) : 948 - 951
  • [2] Buffer layer selection for CuIn1-xGaxSe2 based thin film solar cells
    Kumari, Sarita
    Verma, Ajay Singh
    [J]. MATERIALS RESEARCH EXPRESS, 2014, 1 (01):
  • [3] Electroreflectance study of CuIn1-xGaxSe2 thin film solar cells
    Jo, Hyun-Jun
    Jeon, Dong-Hwan
    Ko, Byoung Soo
    Sung, Shi-Joon
    Hwang, Dae-Kue
    Kang, Jin-Kyu
    Kim, Dae-Hwan
    [J]. CURRENT APPLIED PHYSICS, 2014, 14 (03) : 318 - 321
  • [4] Reactive Sputtering Process for CuIn1-xGaxSe2 Thin Film Solar Cells
    Park, Nae-Man
    Lee, Ho Sub
    Kim, Jeha
    [J]. ETRI JOURNAL, 2012, 34 (05) : 779 - 782
  • [5] Influence of the Ga Content on the Optical and Electrical Properties of CuIn1-xGaxSe2 Thin-Film Solar Cells
    Zhang, Zhenhao
    Witte, Wolfram
    Kiowski, Oliver
    Lemmer, Uli
    Powalla, Michael
    Hoelscher, Hendrik
    [J]. 2012 IEEE 38TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), VOL 2, 2013,
  • [6] Influence of the Ga Content on the Optical and Electrical Properties of CuIn1-xGaxSe2 Thin-Film Solar Cells
    Zhang, Zhenhao
    Witte, Wolfram
    Kiowski, Oliver
    Lemmer, Uli
    Powalla, Michael
    Hoelscher, Hendrik
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (02): : 823 - 827
  • [7] Efficiency improvement of thin film CuIn1-xGaxSe2 structure for solar cells applications
    Benahmed, A.
    Aissat, A.
    Ayachi, B.
    Sfina, N.
    Saidi, F.
    Vilcot, J. P.
    [J]. MICRO AND NANOSTRUCTURES, 2024, 188
  • [8] Potential-Induced Degradation of CuIn1-xGaxSe2 Thin Film Solar Cells
    Fjallstrom, V.
    Salome, P. M. P.
    Hultqvist, A.
    Edoff, M.
    Jarmar, T.
    Aitken, B. G.
    Zhang, K.
    Fuller, K.
    Williams, C. Kosik
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (03): : 1090 - 1094
  • [9] Fabrication of CuIn1-xGaxSe2 thin film solar cells by sputtering and selenization process
    Song, HK
    Jeong, JK
    Kim, HJ
    Kim, SK
    Yoon, KH
    [J]. THIN SOLID FILMS, 2003, 435 (1-2) : 186 - 192
  • [10] Optical functions of thin-film polycrystalline chalcopyrite CuIn1-xGaxSe2
    Han, SH
    Levi, DH
    Althani, HA
    Hasoon, FS
    Bhattacharya, RN
    Hermann, AM
    [J]. COMPOUND SEMICONDUCTOR PHOTOVOLTAICS, 2003, 763 : 47 - 52