Temperature Dependent Current Transport Mechanism in Graphene/Germanium Schottky Barrier Diode

被引:16
|
作者
Khurelbaatar, Zagarzusem [1 ]
Kil, Yeon-Ho [1 ]
Shim, Kyu-Hwan [1 ]
Cho, Hyunjin [2 ]
Kim, Myung-Jong [2 ]
Kim, Yong-Tae [3 ]
Choi, Chel-Jong [1 ]
机构
[1] Chonbuk Natl Univ, Semicond Phys Res Ctr, Sch Semicond & Chem Engn, Jeonju 561756, South Korea
[2] Korea Inst Sci & Technol, Inst Adv Composite Mat, Soft Innovat Mat Res Ctr, Wonju 565905, South Korea
[3] Korea Inst Sci & Technol, Semicond Mat & Device Lab, Seoul 130650, South Korea
基金
新加坡国家研究基金会;
关键词
Graphene; Ge; Si; Schottky barrier height; ideality factor; Schottky barrier inhomogeneities; Gaussian distribution; GE-ON-SI; JUNCTION; VOLTAGE; HEIGHT;
D O I
10.5573/JSTS.2015.15.1.007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have investigated electrical properties of graphene/Ge Schottky barrier diode (SBD) fabricated on Ge film epitaxially grown on Si substrate. When decreasing temperature, barrier height decreased and ideality factor increased, implying their strong temperature dependency. From the conventional Richardson plot, Richardson constant was much less than the theoretical value for n-type Ge. Assuming Gaussian distribution of Schottky barrier height with mean Schottky barrier height and standard deviation, Richardson constant extracted from the modified Richardson plot was comparable to the theoretical value for n-type Ge. Thus, the abnormal temperature dependent Schottky behavior of graphene/Ge SBD could be associated with a considerable deviation from the ideal thermionic emission caused by Schottky barrier inhomogeneities.
引用
收藏
页码:7 / 15
页数:9
相关论文
共 50 条
  • [11] Optimization of recess-free AlGaN/GaN Schottky barrier diode by TiN anode and current transport mechanism analysis
    Hao Wu
    Xuanwu Kang
    Yingkui Zheng
    Ke Wei
    Lin Zhang
    Xinyu Liu
    Guoqi Zhang
    Journal of Semiconductors, 2022, (06) : 57 - 64
  • [12] The Potential Barrier of Graphene Nanoribbon Based Schottky Diode
    Kiat, Wong King
    Ismail, Razali
    Ahmadi, M. Taghi
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2013, 8 (03) : 281 - 284
  • [13] Optimization of recess-free AlGaN/GaN Schottky barrier diode by TiN anode and current transport mechanism analysis
    Wu, Hao
    Kang, Xuanwu
    Zheng, Yingkui
    Ke Wei
    Zhang, Lin
    Liu, Xinyu
    Zhang, Guoqi
    JOURNAL OF SEMICONDUCTORS, 2022, 43 (06)
  • [14] Temperature behaviour and compensation of Schottky barrier diode
    Bera, S. C.
    Singh, R. V.
    Garg, V. K.
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2008, 95 (05) : 457 - 465
  • [15] Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs)
    Tecimer, H.
    Turut, A.
    Uslu, H.
    Altindal, S.
    Uslu, I.
    SENSORS AND ACTUATORS A-PHYSICAL, 2013, 199 : 194 - 201
  • [16] Temperature Dependent Performance Of Al/ZnCdS Schottky Diode And Charge Transport Analysis
    Das, Mrinmay
    Datta, Joydeep
    Dey, Arka
    Jana, Rajkumar
    Ray, Partha Pratim
    INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015), 2016, 1728
  • [17] Leakage current analysis of diamond Schottky barrier diode
    Umezawa, Hitoshi
    Saito, Takeyasu
    Tokuda, Norio
    Ogura, Masahiko
    Ri, Sung-Gi
    Yoshikawa, Hiromichi
    Shikata, Shin-ichi
    APPLIED PHYSICS LETTERS, 2007, 90 (07)
  • [18] Current transport mechanism of AlGaN-channel Schottky barrier diode with extremely low leakage current and high blocking voltage of 2.55 kV
    Zhang, Tao
    Zhang, Yanni
    Li, Ruohan
    Lu, Juan
    Su, Huake
    Xu, Shengrui
    Su, Kai
    Duan, Xiaoling
    Lv, Yueguang
    Zhang, Jincheng
    Hao, Yue
    APPLIED PHYSICS LETTERS, 2022, 120 (09)
  • [19] CURRENT TRANSPORT MECHANISM OF HYDROGENATED AMORPHOUS SILICON SCHOTTKY BARRIER DIODES.
    Mishima, Yasuyoshi
    Hirose, Masataka
    Osaka, Yukio
    1600, (20):
  • [20] Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes
    Gayen, R. N.
    Bhattacharyya, S. R.
    Jana, P.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2014, 29 (09)