Inferring biological tasks using Pareto analysis of high-dimensional data

被引:0
|
作者
Hart, Yuval [1 ]
Sheftel, Hila [1 ]
Hausser, Jean [1 ]
Szekely, Pablo [1 ]
Ben-Moshe, Noa Bossel [2 ]
Korem, Yael [1 ]
Tendler, Avichai [1 ]
Mayo, Avraham E. [1 ]
Alon, Uri [1 ]
机构
[1] Weizmann Inst Sci, Dept Mol Cell Biol, IL-76100 Rehovot, Israel
[2] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
ARCHETYPAL ANALYSIS; GEOMETRY; REVEALS;
D O I
10.1038/NMETH.3254
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present the Pareto task inference method (ParTI; http://www.weizmann.ac.il/mcb/UriAlon/download/ParTI) for inferring biological tasks from high-dimensional biological data. Data are described as a polytope, and features maximally enriched closest to the vertices (or archetypes) allow identification of the tasks the vertices represent. We demonstrate that human breast tumors and mouse tissues are well described by tetrahedrons in gene expression space, with specific tumor types and biological functions enriched at each of the vertices, suggesting four key tasks.
引用
收藏
页码:233 / +
页数:6
相关论文
共 50 条
  • [41] Analyzing high-dimensional cytometry data using FlowSOM
    Quintelier, Katrien
    Couckuyt, Artuur
    Emmaneel, Annelies
    Aerts, Joachim
    Saeys, Yvan
    Van Gassen, Sofie
    NATURE PROTOCOLS, 2021, 16 (08) : 3775 - 3801
  • [42] Forecasting the Japanese macroeconomy using high-dimensional data
    Yoshiki Nakajima
    Naoya Sueishi
    The Japanese Economic Review, 2022, 73 : 299 - 324
  • [43] Similarity joins for high-dimensional data using Spark
    Rong, Chuitian
    Cheng, Xiaohai
    Chen, Ziliang
    Huo, Na
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2019, 31 (20):
  • [44] Ultra High-Dimensional Nonlinear Feature Selection for Big Biological Data
    Yamada, Makoto
    Tang, Jiliang
    Lugo-Martinez, Jose
    Hodzic, Ermin
    Shrestha, Raunak
    Saha, Avishek
    Ouyang, Hua
    Yin, Dawei
    Mamitsuka, Hiroshi
    Sahinalp, Cenk
    Radivojac, Predrag
    Menczer, Filippo
    Chang, Yi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (07) : 1352 - 1365
  • [45] Forecasting the Japanese macroeconomy using high-dimensional data
    Nakajima, Yoshiki
    Sueishi, Naoya
    JAPANESE ECONOMIC REVIEW, 2022, 73 (02) : 299 - 324
  • [46] On landmark selection and sampling in high-dimensional data analysis
    Belabbas, Mohamed-Ali
    Wolfe, Patrick J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1906): : 4295 - 4312
  • [47] Cluster analysis of high-dimensional data: A case study
    Bean, R
    McLachlan, G
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2005, PROCEEDINGS, 2005, 3578 : 302 - 310
  • [48] Principal component analysis for sparse high-dimensional data
    Raiko, Tapani
    Ilin, Alexander
    Karhunen, Juha
    NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 566 - 575
  • [50] A modified linear discriminant analysis for high-dimensional data
    Hyodo, Masashi
    Yamada, Takayuki
    Himeno, Tetsuto
    Seo, Takashi
    HIROSHIMA MATHEMATICAL JOURNAL, 2012, 42 (02) : 209 - 231