Inferring biological tasks using Pareto analysis of high-dimensional data

被引:0
|
作者
Hart, Yuval [1 ]
Sheftel, Hila [1 ]
Hausser, Jean [1 ]
Szekely, Pablo [1 ]
Ben-Moshe, Noa Bossel [2 ]
Korem, Yael [1 ]
Tendler, Avichai [1 ]
Mayo, Avraham E. [1 ]
Alon, Uri [1 ]
机构
[1] Weizmann Inst Sci, Dept Mol Cell Biol, IL-76100 Rehovot, Israel
[2] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
ARCHETYPAL ANALYSIS; GEOMETRY; REVEALS;
D O I
10.1038/NMETH.3254
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present the Pareto task inference method (ParTI; http://www.weizmann.ac.il/mcb/UriAlon/download/ParTI) for inferring biological tasks from high-dimensional biological data. Data are described as a polytope, and features maximally enriched closest to the vertices (or archetypes) allow identification of the tasks the vertices represent. We demonstrate that human breast tumors and mouse tissues are well described by tetrahedrons in gene expression space, with specific tumor types and biological functions enriched at each of the vertices, suggesting four key tasks.
引用
收藏
页码:233 / +
页数:6
相关论文
共 50 条
  • [21] Stringing High-Dimensional Data for Functional Analysis
    Chen, Kun
    Chen, Kehui
    Mueller, Hans-Georg
    Wang, Jane-Ling
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 275 - 284
  • [22] QUADRATIC DISCRIMINANT ANALYSIS FOR HIGH-DIMENSIONAL DATA
    Wu, Yilei
    Qin, Yingli
    Zhu, Mu
    STATISTICA SINICA, 2019, 29 (02) : 939 - 960
  • [23] The Role Of Hubness in High-dimensional Data Analysis
    Tomasev, Nenad
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2014, 38 (04): : 387 - 388
  • [24] The role of hubness in high-dimensional data analysis
    Tomašev, Nenad
    Informatica (Slovenia), 2014, 38 (04): : 387 - 388
  • [25] High-Dimensional Data Analysis Using Parameter Free Algorithm Data Point Positioning Analysis
    Mustapha, S. M. F. D. Syed
    APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [26] FsNet: Feature Selection Network on High-dimensional Biological Data
    Singh, Dinesh
    Climente-Gonzalez, Hector
    Petrovich, Mathis
    Kawakami, Eiryo
    Yamada, Makoto
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [27] Information Analysis of High-Dimensional Data and Applications
    Yang, Xin-She
    Lee, Sanghyuk
    Lee, Sangmin
    Theera-Umpon, Nipon
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [28] Regularization techniques for high-dimensional data analysis
    Lu, Jiwen
    Peng, Xi
    Deng, Weihong
    Mian, Ajmal
    IMAGE AND VISION COMPUTING, 2017, 60 : 1 - 3
  • [29] Sparse representation approaches for the classification of high-dimensional biological data
    Li, Yifeng
    Ngom, Alioune
    BMC SYSTEMS BIOLOGY, 2013, 7
  • [30] FEATURE SELECTION FOR HIGH-DIMENSIONAL DATA ANALYSIS
    Verleysen, Michel
    ECTA 2011/FCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION THEORY AND APPLICATIONS AND INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION THEORY AND APPLICATIONS, 2011,