Inferring biological tasks using Pareto analysis of high-dimensional data

被引:0
|
作者
Hart, Yuval [1 ]
Sheftel, Hila [1 ]
Hausser, Jean [1 ]
Szekely, Pablo [1 ]
Ben-Moshe, Noa Bossel [2 ]
Korem, Yael [1 ]
Tendler, Avichai [1 ]
Mayo, Avraham E. [1 ]
Alon, Uri [1 ]
机构
[1] Weizmann Inst Sci, Dept Mol Cell Biol, IL-76100 Rehovot, Israel
[2] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
ARCHETYPAL ANALYSIS; GEOMETRY; REVEALS;
D O I
10.1038/NMETH.3254
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present the Pareto task inference method (ParTI; http://www.weizmann.ac.il/mcb/UriAlon/download/ParTI) for inferring biological tasks from high-dimensional biological data. Data are described as a polytope, and features maximally enriched closest to the vertices (or archetypes) allow identification of the tasks the vertices represent. We demonstrate that human breast tumors and mouse tissues are well described by tetrahedrons in gene expression space, with specific tumor types and biological functions enriched at each of the vertices, suggesting four key tasks.
引用
收藏
页码:233 / +
页数:6
相关论文
共 50 条
  • [1] Inferring biological tasks using Pareto analysis of high-dimensional data
    Hart Y.
    Sheftel H.
    Hausser J.
    Szekely P.
    Ben-Moshe N.B.
    Korem Y.
    Tendler A.
    Mayo A.E.
    Alon U.
    [J]. Nature Methods, 2015, 12 (3) : 233 - 235
  • [2] Inferring Networks from High-Dimensional Data with Mixed Variables
    Abbruzzo, Antonino
    Mineo, Angelo M.
    [J]. ADVANCES IN COMPLEX DATA MODELING AND COMPUTATIONAL METHODS IN STATISTICS, 2015, : 1 - 15
  • [3] High-dimensional Density Estimation for Data Mining Tasks
    Kuleshov, Alexander
    Bernstein, Alexander
    Yanovich, Yury
    [J]. 2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 523 - 530
  • [4] Handling high-dimensional data in air pollution forecasting tasks
    Domanska, Diana
    Lukasik, Szymon
    [J]. ECOLOGICAL INFORMATICS, 2016, 34 : 70 - 91
  • [5] Multivariate Feature Ranking With High-Dimensional Data for Classification Tasks
    Jimenez, Fernando
    Sanchez, Gracia
    Palma, Jose
    Miralles-Pechuan, Luis
    Botia, Juan A.
    [J]. IEEE ACCESS, 2022, 10 : 60421 - 60437
  • [6] High-dimensional data analysis and visualisation
    Chen, Cathy W. S.
    Lombardo, Rosaria
    Ripamonti, Enrico
    [J]. COMPUTATIONAL STATISTICS, 2024, 39 (01) : 1 - 2
  • [7] Procrustes Analysis for High-Dimensional Data
    Andreella, Angela
    Finos, Livio
    [J]. PSYCHOMETRIKA, 2022, 87 (04) : 1422 - 1438
  • [8] Procrustes Analysis for High-Dimensional Data
    Angela Andreella
    Livio Finos
    [J]. Psychometrika, 2022, 87 : 1422 - 1438
  • [9] High-dimensional data analysis and visualisation
    Cathy W. S. Chen
    Rosaria Lombardo
    Enrico Ripamonti
    [J]. Computational Statistics, 2024, 39 : 1 - 2
  • [10] Dimensionality reduction for visualizing high-dimensional biological data
    Malepathirana, Tamasha
    Senanayake, Damith
    Vidanaarachchi, Rajith
    Gautam, Vini
    Halgamuge, Saman
    [J]. BIOSYSTEMS, 2022, 220