An approximate joint model for multiple paired longitudinal outcomes and time-to-event data

被引:2
|
作者
Elmi, Angelo F. [1 ]
Grantz, Katherine L. [2 ]
Albert, Paul S. [3 ]
机构
[1] George Washington Univ, Milken Inst Sch Publ Hlth, Dept Epidemiol & Biostat, Washington, DC 20052 USA
[2] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, Epidemiol Branch, Div Intramural Populat Hlth Res, Bethesda, MD 20817 USA
[3] NCI, Biostat Branch, Div Canc Epidemiol & Genet, Rockville, MD 20850 USA
基金
美国国家卫生研究院;
关键词
Joint modeling; Multivariate mixed effects models; Paired longitudinal data; SIMPLE 2-STAGE PROCEDURE; DISCRETE; ERROR;
D O I
10.1111/biom.12862
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Joint modeling of multivariate paired longitudinal data and time-to-event data presents computational challenges that supersede full likelihood estimation due to the large dimensional random effects vector needed to capture correlation due to clustering with respect to pairs, subjects, and outcomes. We propose an alternative, computationally simpler approach to estimation of complex shared parameter models where missing data is imputed based on the Posterior Predictive Distribution from a Conditional Linear Model (CLM) approximation. Existing methods for complete data are then implemented to obtain estimates of the event time model parameters. Our method is applied to examine the effects of discordant growth in anthropometric measures of longitudinal fetal growth in twin fetuses and the timing of birth. Simulation results are presented to show that our method performs relatively well with moderate measurement errors under certain CLM approximations.
引用
收藏
页码:1112 / 1119
页数:8
相关论文
共 50 条
  • [1] A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event
    Rizopoulos, Dimitris
    Ghosh, Pulak
    [J]. STATISTICS IN MEDICINE, 2011, 30 (12) : 1366 - 1380
  • [2] Joint Modeling of Longitudinal and Time-to-Event Data
    Jacqmin-Gadda, Helene
    [J]. BIOMETRICS, 2018, 74 (01) : 383 - 384
  • [3] An Overview of Joint Modeling of Time-to-Event and Longitudinal Outcomes
    Papageorgiou, Grigorios
    Mauff, Katya
    Tomer, Anirudh
    Rizopoulos, Dimitris
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6, 2019, 6 : 223 - 240
  • [4] Flexible joint model for time-to-event and non-Gaussian longitudinal outcomes
    Doms, Hortense
    Lambert, Philippe
    Legrand, Catherine
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2024,
  • [5] joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes
    Hickey, Graeme L.
    Philipson, Pete
    Jorgensen, Andrea
    Kolamunnage-Dona, Ruwanthi
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
  • [6] Boosting joint models for longitudinal and time-to-event data
    Waldmann, Elisabeth
    Taylor-Robinson, David
    Klein, Nadja
    Kneib, Thomas
    Pressler, Tania
    Schmid, Matthias
    Mayr, Andreas
    [J]. BIOMETRICAL JOURNAL, 2017, 59 (06) : 1104 - 1121
  • [7] Joint modeling of longitudinal and time-to-event data: An overview
    Tsiatis, AA
    Davidian, M
    [J]. STATISTICA SINICA, 2004, 14 (03) : 809 - 834
  • [8] A joint model for longitudinal continuous and time-to-event outcomes with direct marginal interpretation
    Efendi, Achmad
    Molenberghs, Geert
    Njagi, Edmund Njeru
    Dendale, Paul
    [J]. BIOMETRICAL JOURNAL, 2013, 55 (04) : 572 - 588
  • [9] joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes
    Graeme L. Hickey
    Pete Philipson
    Andrea Jorgensen
    Ruwanthi Kolamunnage-Dona
    [J]. BMC Medical Research Methodology, 18
  • [10] Joint Models for Incomplete Longitudinal Data and Time-to-Event Data
    Takeda, Yuriko
    Misumi, Toshihiro
    Yamamoto, Kouji
    [J]. MATHEMATICS, 2022, 10 (19)