Effect of resistivity on small edge localized mode

被引:10
|
作者
Wu, N. [1 ,2 ]
Chen, S. Y. [1 ,2 ]
Mou, M. L. [1 ,2 ]
Tang, C. J. [1 ,2 ]
机构
[1] Sichuan Univ, Coll Phys Sci & Technol, Chengdu 610064, Sichuan, Peoples R China
[2] Sichuan Univ, Key Lab High Energy Dens Phys & Technol, Minist Educ, Chengdu 610064, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
ALCATOR C-MOD; TRANSPORT; PEDESTAL; REGIME;
D O I
10.1063/1.5038042
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effect of resistivity on small edge localized mode (ELM) is investigated based on the peeling-ballooning three-field module of BOUT++. The ELM size increases with increasing resistivity, which is attributed to both linear growth rate and turbulence intensity. In the high resistivity case, a large linear growth rate causes a fierce initial collapse of pedestal, and the short duration of the zonal flow results in weak turbulence suppression, leading to more additional energy loss in the turbulence transport phase. This work is expected to provide some reference on understanding small ELM. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Reduced heat transport between edge-localized-mode bursts at low collisionality and small poloidal Larmor radius
    Urano, H
    Takizuka, T
    Kamada, Y
    Oyama, N
    Takenaga, H
    Miura, Y
    PHYSICAL REVIEW LETTERS, 2005, 95 (03)
  • [32] The EPED pedestal model and edge localized mode-suppressed regimes: Studies of quiescent H-mode and development of a model for edge localized mode suppression via resonant magnetic perturbations
    Snyder, P. B.
    Osborne, T. H.
    Burrell, K. H.
    Groebner, R. J.
    Leonard, A. W.
    Nazikian, R.
    Orlov, D. M.
    Schmitz, O.
    Wade, M. R.
    Wilson, H. R.
    PHYSICS OF PLASMAS, 2012, 19 (05)
  • [33] Toward integrated multi-scale pedestal simulations including edge-localized-mode dynamics, evolution of edge-localized-mode cycles, and continuous fluctuations
    Xu, X. Q.
    Xia, T. Y.
    Yan, N.
    Liu, Z. X.
    Kong, D. F.
    Diallo, A.
    Groebner, R. J.
    Hubbard, A. E.
    Hughes, J. W.
    PHYSICS OF PLASMAS, 2016, 23 (05)
  • [34] Edge impurity dynamics during an edge-localized mode cycle on DIII-D
    Wade, MR
    Burrell, KH
    Hogan, JT
    Leonard, AW
    Osborne, TH
    Snyder, PB
    Coster, D
    PHYSICS OF PLASMAS, 2005, 12 (05)
  • [35] Effect of supersonic molecular beam injection deposition on edge localized mode mitigation in the HL-2A H-mode plasmas
    Yang, Z. C.
    Shi, Z. B.
    Zhong, W. L.
    Zhang, B. Y.
    Fan, Q. C.
    Li, H. D.
    Jiang, M.
    Shi, P. W.
    Chen, C. Y.
    Chen, W.
    Liu, Z. T.
    Yu, D. L.
    Zhou, Y.
    Feng, B. B.
    Song, X. M.
    Ding, X. T.
    Yang, Q. W.
    Duan, X. R.
    PHYSICS OF PLASMAS, 2016, 23 (01)
  • [36] Development of ion source for simulation of edge localized mode in divertor plasma
    Daibo, A.
    Okamoto, A.
    Takahashi, H.
    Kumagai, T.
    Takahashi, T.
    Tsubota, S.
    Kitajima, S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (02):
  • [37] On the mechanism for edge localized mode mitigation by supersonic molecular beam injection
    Rhee, T.
    Kwon, J. M.
    Diamond, P. H.
    Xiao, W. W.
    PHYSICS OF PLASMAS, 2012, 19 (02)
  • [38] Erosion and impurity transport for the edge localized mode suppression window in KSTAR
    Navarro, Marcos
    Van Blarcum, Jonathan
    Frerichs, Heinke
    Romazanov, Juri
    Kirschner, Andreas
    Park, Jong-Kyu
    Yang, Seong-Moo
    Schmitz, Oliver
    PHYSICS OF PLASMAS, 2024, 31 (08)
  • [39] Stability of ideal and non-ideal edge localized infernal mode
    Dong, G. Q.
    Liu, Y. Q.
    Wang, S.
    Zhang, N.
    Yu, D. L.
    Liu, Y.
    Wang, Z. R.
    PHYSICS OF PLASMAS, 2017, 24 (11)
  • [40] Destabilization mechanism of edge localized MHD mode by a toroidal rotation in tokamaks
    Aiba, N.
    Furukawa, M.
    Hirota, M.
    Tokuda, S.
    NUCLEAR FUSION, 2010, 50 (04)