A primal-dual algorithm framework for convex saddle-point optimization

被引:2
|
作者
Zhang, Benxin [1 ]
Zhu, Zhibin [2 ]
机构
[1] Guilin Univ Elect Technol, Sch Elect Engn & Automat, Guangxi Key Lab Automat Detecting Technol & Instr, Jinji Rd, Guilin, Peoples R China
[2] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guangxi Coll & Univ Key Lab Data Anal & Computat, Jinji Rd, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
primal-dual method; proximal point algorithm; convex optimization; variational inequalities; VARIATION IMAGE-RECONSTRUCTION; CONVERGENCE ANALYSIS; MINIMIZATION; RESTORATION;
D O I
10.1186/s13660-017-1548-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate O(1/t) in the ergodic and nonergodic senses is also given, where t denotes the iteration number.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Solving saddle point problems: a landscape of primal-dual algorithm with larger stepsizes
    Fan Jiang
    Zhiyuan Zhang
    Hongjin He
    [J]. Journal of Global Optimization, 2023, 85 : 821 - 846
  • [22] Solving saddle point problems: a landscape of primal-dual algorithm with larger stepsizes
    Jiang, Fan
    Zhang, Zhiyuan
    He, Hongjin
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (04) : 821 - 846
  • [23] Primal-dual interior-point algorithm for convex quadratic semi-definite optimization
    Wang, G. Q.
    Bai, Y. Q.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 3389 - 3402
  • [24] A primal–dual prediction–correction algorithm for saddle point optimization
    Hongjin He
    Jitamitra Desai
    Kai Wang
    [J]. Journal of Global Optimization, 2016, 66 : 573 - 583
  • [25] A Generalized Primal-Dual Algorithm with Improved Convergence Condition for Saddle Point Problems
    He, Bingsheng
    Ma, Feng
    Xu, Shengjie
    Yuan, Xiaoming
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (03): : 1157 - 1183
  • [26] Primal-Dual Proximal Algorithms for Structured Convex Optimization: A Unifying Framework
    Latafat, Puya
    Patrinos, Panagiotis
    [J]. LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 97 - 120
  • [27] Primal-dual Feasible Interior Point Algorithm for Convex Quadratic Programming
    Yong, Longquan
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 3, 2009, : 109 - 113
  • [28] A SMOOTH PRIMAL-DUAL OPTIMIZATION FRAMEWORK FOR NONSMOOTH COMPOSITE CONVEX MINIMIZATION
    Quoc Tran-Dinh
    Fercoq, Olivier
    Cevher, Volkan
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (01) : 96 - 134
  • [29] A second order primal-dual algorithm for nonsmooth convex composite optimization
    Dhingra, Neil K.
    Khong, Sei Zhen
    Jovanovic, Mihailo R.
    [J]. 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [30] Accelerated Primal-Dual Algorithm for Distributed Non-convex Optimization
    Zhang, Shengjun
    Bailey, Colleen P.
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,