A SMOOTH PRIMAL-DUAL OPTIMIZATION FRAMEWORK FOR NONSMOOTH COMPOSITE CONVEX MINIMIZATION

被引:39
|
作者
Quoc Tran-Dinh [1 ]
Fercoq, Olivier [2 ]
Cevher, Volkan [3 ]
机构
[1] Univ North Carolina Chapel Hill UNC, Dept Stat Res & Operat Res, Chapel Hill, NC 27599 USA
[2] Univ Paris Sacley, CNRS, LCTI, Telecom ParisTech, F-75013 Paris, France
[3] Ecole Polytech Fed Lausanne, Lab Informat & Inference Syst LIONS, CH-1015 Lausanne, Switzerland
基金
美国国家科学基金会;
关键词
gap reduction technique; first-order primal-dual methods; augmented Lagrangian; smoothing techniques; homotopy; separable convex minimization; parallel and distributed computation; ALTERNATING DIRECTION METHOD; CONVERGENCE RATE ANALYSIS; SADDLE-POINT; VARIATIONAL-INEQUALITIES; ITERATION-COMPLEXITY; DECOMPOSITION; ALGORITHM; EXTRAGRADIENT; GEOMETRY;
D O I
10.1137/16M1093094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new and low per-iteration complexity first-order primal-dual optimization framework for a convex optimization template with broad applications. Our analysis relies on a novel combination of three classic ideas applied to the primal-dual gap function: smoothing, acceleration, and homotopy. The algorithms due to the new approach achieve the best-known convergence rate results, in particular when the template consists of only nonsmooth functions. We also outline a restart strategy for the acceleration to significantly enhance the practical performance. We demonstrate relations with the augmented Lagrangian method and show how to exploit the strongly convex objectives with rigorous convergence rate guarantees. We provide representative examples to illustrate that the new methods can outperform the state of the art, including Chambolle Pock, and the alternating direction method-of-multipliers algorithms. We also compare our algorithms with the well-known Nesterov smoothing method.
引用
收藏
页码:96 / 134
页数:39
相关论文
共 50 条
  • [1] An adaptive primal-dual framework for nonsmooth convex minimization
    Quoc Tran-Dinh
    Ahmet Alacaoglu
    Olivier Fercoq
    Volkan Cevher
    [J]. Mathematical Programming Computation, 2020, 12 : 451 - 491
  • [2] An adaptive primal-dual framework for nonsmooth convex minimization
    Quoc Tran-Dinh
    Alacaoglu, Ahmet
    Fercoq, Olivier
    Cevher, Volkan
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2020, 12 (03) : 451 - 491
  • [3] Smooth Primal-Dual Coordinate Descent Algorithms for Nonsmooth Convex Optimization
    Alacaoglu, Ahmet
    Tran-Dinh, Quoc
    Fercoq, Olivier
    Cevher, Volkan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [4] A second order primal-dual algorithm for nonsmooth convex composite optimization
    Dhingra, Neil K.
    Khong, Sei Zhen
    Jovanovic, Mihailo R.
    [J]. 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [5] A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization
    Dhingra, Neil K.
    Khong, Sei Zhen
    Jovanovic, Mihailo R.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4061 - 4076
  • [6] An exponentially convergent primal-dual algorithm for nonsmooth composite minimization
    Ding, Dongsheng
    Hu, Bin
    Dhingra, Neil K.
    Jovanovic, Mihailo R.
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 4927 - 4932
  • [7] A Universal Primal-Dual Convex Optimization Framework
    Yurtsever, Alp
    Quoc Tran-Dinh
    Cevher, Volkan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [8] A Decentralized Primal-Dual Framework for Non-Convex Smooth Consensus Optimization
    Mancino-Ball, Gabriel
    Xu, Yangyang
    Chen, Jie
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 525 - 538
  • [9] Primal-Dual Algorithms for Convex Optimization via Regret Minimization
    Nam Ho-Nguyen
    Kilinc-Karzan, Fatma
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (02): : 284 - 289
  • [10] Projected Primal-Dual Dynamics for Distributed Constrained Nonsmooth Convex Optimization
    Zhu, Yanan
    Yu, Wenwu
    Wen, Guanghui
    Chen, Guanrong
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (04) : 1776 - 1782