From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities

被引:137
|
作者
Bobkov, SG
Ledoux, M
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Toulouse 3, CNRS, Lab Stat & Probabil, Dept Math, F-31062 Toulouse, France
关键词
D O I
10.1007/PL00001645
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop several applications of the Brunn-Minkowski inequality in the Prekopa-Leindler form. In particular, we show that an argument of B. Maurey may be adapted to deduce from the Prekopa-Leindler theorem the Brascamp-Lieb inequality for strictly convex potentials. We deduce similarly the logarithmic Sobolev inequality for uniformly convex potentials for which we deal more generally with arbitrary norms and obtain some new results in this context. Applications to transportation cost and to concentration on uniformly convex bodies complete the exposition.
引用
收藏
页码:1028 / 1052
页数:25
相关论文
共 50 条
  • [1] From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities
    S.G. Bobkov
    M. Ledoux
    Geometric and Functional Analysis, 2000, 10 : 1028 - 1052
  • [2] DIMENSIONAL IMPROVEMENTS OF THE LOGARITHMIC SOBOLEV, TALAGRAND AND BRASCAMP-LIEB INEQUALITIES
    Bolley, Francois
    Gentil, Ivan
    Guillin, Arnaud
    ANNALS OF PROBABILITY, 2018, 46 (01): : 261 - 301
  • [3] From brunn-minkowski to sharp sobolev inequalities
    Bobkov, S. G.
    Ledoux, M.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) : 369 - 384
  • [4] Brascamp-Lieb inequalities and convexity
    Barthe, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (08): : 885 - 888
  • [5] A continuous version of the Brascamp-Lieb inequalities
    Barthe, F
    GEOMETIC ASPECTS OF FUNCTIONAL ANALYSIS, 2004, 1850 : 53 - 63
  • [6] Regularized Brascamp-lieb Inequalities And An Application
    Maldague, Dominique
    QUARTERLY JOURNAL OF MATHEMATICS, 2022, 73 (01): : 311 - 331
  • [7] Intertwinings and generalized Brascamp-Lieb inequalities
    Arnaudon, Marc
    Bonnefont, Michel
    Joulin, Alderic
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (03) : 1021 - 1054
  • [8] Global Nonlinear Brascamp-Lieb Inequalities
    Bennett, Jonathan
    Bez, Neal
    Gutierrez, Susana
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) : 1806 - 1817
  • [9] On dual Brunn-Minkowski inequalities
    Zhao, CJ
    Pecaric, J
    Leng, GS
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (02): : 357 - 363
  • [10] THE ENDPOINT PERTURBED BRASCAMP-LIEB INEQUALITIES WITH EXAMPLES
    Zhang, Ruixiang
    ANALYSIS & PDE, 2018, 11 (03): : 555 - 581