From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities

被引:137
|
作者
Bobkov, SG
Ledoux, M
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Toulouse 3, CNRS, Lab Stat & Probabil, Dept Math, F-31062 Toulouse, France
关键词
D O I
10.1007/PL00001645
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop several applications of the Brunn-Minkowski inequality in the Prekopa-Leindler form. In particular, we show that an argument of B. Maurey may be adapted to deduce from the Prekopa-Leindler theorem the Brascamp-Lieb inequality for strictly convex potentials. We deduce similarly the logarithmic Sobolev inequality for uniformly convex potentials for which we deal more generally with arbitrary norms and obtain some new results in this context. Applications to transportation cost and to concentration on uniformly convex bodies complete the exposition.
引用
收藏
页码:1028 / 1052
页数:25
相关论文
共 50 条
  • [21] BRASCAMP-LIEB INEQUALITIES FOR NON-COMMUTATIVE INTEGRATION
    Carlen, Eric A.
    Lieb, Elliott H.
    DOCUMENTA MATHEMATICA, 2008, 13 : 553 - 584
  • [22] CAPACITARY INEQUALITIES OF THE BRUNN-MINKOWSKI TYPE
    BORELL, C
    MATHEMATISCHE ANNALEN, 1983, 263 (02) : 179 - 184
  • [23] Dual cyclic Brunn-Minkowski inequalities
    Zhao, Chang-Jian
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2015, 22 (03) : 391 - 401
  • [24] Functional Inequalities Derived from the Brunn-Minkowski Inequalities for Quermassintegrals
    Colesanti, Andrea
    Saorin Gomez, Eugenia
    JOURNAL OF CONVEX ANALYSIS, 2010, 17 (01) : 35 - 49
  • [25] On the stability of Brunn-Minkowski type inequalities
    Colesanti, Andrea
    Livshyts, Galyna V.
    Marsiglietti, Arnaud
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (03) : 1120 - 1139
  • [26] A Lp Brunn-Minkowski Theory for Logarithmic Capacity
    Chen, Zhengmao
    POTENTIAL ANALYSIS, 2021, 54 (02) : 273 - 298
  • [27] A Lp Brunn-Minkowski Theory for Logarithmic Capacity
    Zhengmao Chen
    Potential Analysis, 2021, 54 : 273 - 298
  • [28] From Brunn–Minkowski to sharp Sobolev inequalities
    S. G. Bobkov
    M. Ledoux
    Annali di Matematica Pura ed Applicata, 2008, 187 : 369 - 384
  • [29] Inverse Brascamp-Lieb inequalities along the heat equation
    Barthe, F
    Cordero-Erausquin, D
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2004, 1850 : 65 - 71
  • [30] Brunn-Minkowski and Zhang inequalities for convolution bodies
    Alonso-Gutierrez, David
    Hugo Jimenez, C.
    Villa, Rafael
    ADVANCES IN MATHEMATICS, 2013, 238 : 50 - 69