DIMENSIONAL IMPROVEMENTS OF THE LOGARITHMIC SOBOLEV, TALAGRAND AND BRASCAMP-LIEB INEQUALITIES

被引:19
|
作者
Bolley, Francois [1 ]
Gentil, Ivan [2 ]
Guillin, Arnaud [3 ]
机构
[1] Univ Paris 06, CNRS, Lab Probabil & Modeles Aleatoires, UMR 7599, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, UMR 5208,CNRS, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[3] Univ Clermont Auvergne, CNRS, Lab Math, UMR 6620, Ave Landais, F-63177 Aubiere, France
来源
ANNALS OF PROBABILITY | 2018年 / 46卷 / 01期
关键词
Logarithmic Sobolev inequality; Talagrand inequality; Brascamp-Lieb inequality; Fokker-Planck equations; optimal transport; HAMILTON-JACOBI EQUATIONS; BRUNN-MINKOWSKI; GRADIENT FLOWS; MASS-TRANSPORT; HYPERCONTRACTIVITY; DISTANCE; SPACES;
D O I
10.1214/17-AOP1184
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we consider dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities. For this, we use optimal transport methods and the Borell-Brascamp-Lieb inequality. These refinements can be written as a deficit in the classical inequalities. They have the right scale with respect to the dimension. They lead to sharpened concentration properties as well as refined contraction bounds, convergence to equilibrium and short time behavior for the laws of solutions to stochastic differential equations.
引用
收藏
页码:261 / 301
页数:41
相关论文
共 50 条
  • [1] From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities
    Bobkov, SG
    Ledoux, M
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (05) : 1028 - 1052
  • [2] From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities
    S.G. Bobkov
    M. Ledoux
    Geometric and Functional Analysis, 2000, 10 : 1028 - 1052
  • [3] Brascamp-Lieb inequalities and convexity
    Barthe, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (08): : 885 - 888
  • [4] A continuous version of the Brascamp-Lieb inequalities
    Barthe, F
    GEOMETIC ASPECTS OF FUNCTIONAL ANALYSIS, 2004, 1850 : 53 - 63
  • [5] Regularized Brascamp-lieb Inequalities And An Application
    Maldague, Dominique
    QUARTERLY JOURNAL OF MATHEMATICS, 2022, 73 (01): : 311 - 331
  • [6] Intertwinings and generalized Brascamp-Lieb inequalities
    Arnaudon, Marc
    Bonnefont, Michel
    Joulin, Alderic
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (03) : 1021 - 1054
  • [7] Global Nonlinear Brascamp-Lieb Inequalities
    Bennett, Jonathan
    Bez, Neal
    Gutierrez, Susana
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) : 1806 - 1817
  • [8] THE ENDPOINT PERTURBED BRASCAMP-LIEB INEQUALITIES WITH EXAMPLES
    Zhang, Ruixiang
    ANALYSIS & PDE, 2018, 11 (03): : 555 - 581
  • [9] Brascamp-Lieb Inequalities on Compact Homogeneous Spaces
    Bramati, Roberto
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2019, 7 (01): : 130 - 157
  • [10] Correlation and Brascamp-Lieb Inequalities for Markov Semigroups
    Barthe, Franck
    Cordero-Erausquin, Dario
    Ledoux, Michel
    Maurey, Bernard
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (10) : 2177 - 2216