A Multi-Scale Structural Engineering Strategy for High-Performance MXene Hydrogel Supercapacitor Electrode

被引:140
|
作者
Huang, Xianwu [1 ,2 ]
Huang, Jiahui [1 ,2 ]
Yang, Dong [1 ,2 ]
Wu, Peiyi [1 ,2 ,3 ]
机构
[1] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
[2] Fudan Univ, Adv Mat Lab, Dept Macromol Sci, Shanghai 200433, Peoples R China
[3] Donghua Univ, Ctr Adv LowDimens Mat, Coll Chem Chem Engn & Biotechnol, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; energy density; hydrogel; multi-scale; MXene; supercapacitor electrodes; PSEUDOCAPACITIVE ELECTRODES;
D O I
10.1002/advs.202101664
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MXenes as an emerging two-dimensional (2D) material have attracted tremendous interest in electrochemical energy-storage systems such as supercapacitors. Nevertheless, 2D MXene flakes intrinsically tend to lie flat on the substrate when self-assembling as electrodes, leading to the highly tortuous ion pathways orthogonal to the current collector and hindering ion accessibility. Herein, a facile strategy toward multi-scale structural engineering is proposed to fabricate high-performance MXene hydrogel supercapacitor electrodes. By unidirectional freezing of the MXene slurry followed by a designed thawing process in the sulfuric acid electrolyte, the hydrogel electrode is endowed with a three-dimensional (3D) open macrostructure impregnated with sufficient electrolyte and H+-intercalated microstructure, which provide abundant active sites for ion storage. Meanwhile, the ordered channels bring through-electrode ion and electron transportation pathways that facilitate electrolyte infiltration and mass exchange between electrolyte and electrode. Furthermore, this strategy can also be extended to the fabrication of a 3D-printed all-MXene micro-supercapacitor (MSC), delivering an ultrahigh areal capacitance of 2.0 F cm(-2) at 1.2 mA cm(-2) and retaining 1.2 F cm(-2) at 60 mA cm(-2) together with record-high energy density (0.1 mWh cm(-2) at 0.38 mW cm(-2)).
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Facile synthesis of graphene/polyaniline composite hydrogel for high-performance supercapacitor
    Jun Chen
    Juan Song
    Xiaomiao Feng
    Polymer Bulletin, 2017, 74 : 27 - 37
  • [42] Facile synthesis of graphene/polyaniline composite hydrogel for high-performance supercapacitor
    Chen, Jun
    Song, Juan
    Feng, Xiaomiao
    POLYMER BULLETIN, 2017, 74 (01) : 27 - 37
  • [43] Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor
    Xu, Ting
    Wang, Yaxuan
    Liu, Kun
    Zhao, Qingshuang
    Liang, Qidi
    Zhang, Meng
    Si, Chuanling
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2023, 6 (03)
  • [44] Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor
    Ting Xu
    Yaxuan Wang
    Kun Liu
    Qingshuang Zhao
    Qidi Liang
    Meng Zhang
    Chuanling Si
    Advanced Composites and Hybrid Materials, 2023, 6
  • [45] A Strategy for Synthesis of Carbon Nitride Induced Chemically Doped 2D MXene for High-Performance Supercapacitor Electrodes
    Yoon, Yeoheung
    Lee, Minhe
    Kim, Seong Ku
    Bae, Garam
    Song, Wooseok
    Myung, Sung
    Lim, Jongsun
    Lee, Sun Sook
    Zyung, Taehyoung
    An, Ki-Seok
    ADVANCED ENERGY MATERIALS, 2018, 8 (15)
  • [46] Structural engineering of electrode materials to boost high-performance sodium-ion batteries
    Liu, Qiannan
    Hu, Zhe
    Zou, Chao
    Jin, Huile
    Wang, Shun
    Li, Lin
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (09):
  • [47] Selectivity for intercalated ions in MXene toward a high-performance capacitive electrode
    Hu, Minmin
    Dai, Jun
    Chen, Lihong
    Meng, Alan
    Wang, Lei
    Li, Guicun
    Xie, Haijiao
    Li, Zhenjiang
    SCIENCE CHINA-MATERIALS, 2023, 66 (03) : 974 - 981
  • [48] MXene/AgNWs/MXene Sandwich-Structured Transparent Electrode for High-Performance Flexible OLEDs
    Yang, Zhuo
    Guo, Yuanyuan
    Guo, Wenhao
    Zhao, Min
    Wang, Hua
    Wei, Bin
    Miao, Yanqin
    Guo, Kunping
    SMALL, 2025,
  • [49] Fabrication of nickel foam/MXene/CoAl-layered double hydroxide by electrodeposition as electrode material for high-performance asymmetric supercapacitor
    Ma, Shaoning
    Wang, Wei
    Che, Xingke
    Ren, Qiang
    Li, Yixuan
    Hou, Chunping
    SYNTHETIC METALS, 2024, 305
  • [50] High-performance positive electrode material of MXene/FeNi 2 S 4 nanocomposite for flexible supercapacitor with large potential window
    Kumar, Subalakshmi
    Kaliamurthy, Ashok Kumar
    Lee, Youngmin
    Lee, Sejoon
    JOURNAL OF ENERGY STORAGE, 2024, 95