A Multi-Scale Structural Engineering Strategy for High-Performance MXene Hydrogel Supercapacitor Electrode

被引:140
|
作者
Huang, Xianwu [1 ,2 ]
Huang, Jiahui [1 ,2 ]
Yang, Dong [1 ,2 ]
Wu, Peiyi [1 ,2 ,3 ]
机构
[1] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
[2] Fudan Univ, Adv Mat Lab, Dept Macromol Sci, Shanghai 200433, Peoples R China
[3] Donghua Univ, Ctr Adv LowDimens Mat, Coll Chem Chem Engn & Biotechnol, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; energy density; hydrogel; multi-scale; MXene; supercapacitor electrodes; PSEUDOCAPACITIVE ELECTRODES;
D O I
10.1002/advs.202101664
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MXenes as an emerging two-dimensional (2D) material have attracted tremendous interest in electrochemical energy-storage systems such as supercapacitors. Nevertheless, 2D MXene flakes intrinsically tend to lie flat on the substrate when self-assembling as electrodes, leading to the highly tortuous ion pathways orthogonal to the current collector and hindering ion accessibility. Herein, a facile strategy toward multi-scale structural engineering is proposed to fabricate high-performance MXene hydrogel supercapacitor electrodes. By unidirectional freezing of the MXene slurry followed by a designed thawing process in the sulfuric acid electrolyte, the hydrogel electrode is endowed with a three-dimensional (3D) open macrostructure impregnated with sufficient electrolyte and H+-intercalated microstructure, which provide abundant active sites for ion storage. Meanwhile, the ordered channels bring through-electrode ion and electron transportation pathways that facilitate electrolyte infiltration and mass exchange between electrolyte and electrode. Furthermore, this strategy can also be extended to the fabrication of a 3D-printed all-MXene micro-supercapacitor (MSC), delivering an ultrahigh areal capacitance of 2.0 F cm(-2) at 1.2 mA cm(-2) and retaining 1.2 F cm(-2) at 60 mA cm(-2) together with record-high energy density (0.1 mWh cm(-2) at 0.38 mW cm(-2)).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Multi-scale high-performance fluid flow: Simulations through porous media
    Perovic, Nevena
    Frisch, Jerome
    Salama, Amgad
    Sun, Shuyu
    Rank, Ernst
    Mundani, Ralf-Peter
    ADVANCES IN ENGINEERING SOFTWARE, 2017, 103 : 85 - 98
  • [32] 2D Carbide MXene under postetch low-temperature annealing for high-performance supercapacitor electrode
    Zhang, Zhirong
    Yao, Zhongping
    Zhang, Xiao
    Jiang, Zhaohua
    ELECTROCHIMICA ACTA, 2020, 359
  • [33] Hydrothermal carbonization of chitosan for high-performance supercapacitor electrode materials
    Qi, Xinhua
    Zhu, Linfeng
    Shen, Feng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [34] High-Performance Supercapacitor Electrode Based on Buckypaper/Polyaniline Composite
    Toan Phuoc Tran
    Quyet Huu Do
    Journal of Electronic Materials, 2017, 46 : 6056 - 6062
  • [35] A new quaternary nanohybrid composite electrode for a high-performance supercapacitor
    Ensafi, Ali A.
    Ahmadi, Najmeh
    Rezaei, Behzad
    Abdolmaleki, Amir
    Mahmoudian, Manzar
    ENERGY, 2018, 164 : 707 - 721
  • [36] Fabrication of Graphene/Polyaniline Composite for High-Performance Supercapacitor Electrode
    Li, Jing
    Xie, Huaqing
    Li, Yang
    Wang, Jifen
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (02) : 1132 - 1135
  • [37] High-Performance Supercapacitor Electrode Based on Buckypaper/Polyaniline Composite
    Toan Phuoc Tran
    Quyet Huu Do
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (10) : 6056 - 6062
  • [38] Calixarene based nanocomposite materials for high-performance supercapacitor electrode
    Waghmode, Babasaheb J.
    Soni, Roby
    Patil, Kashinath R.
    Malkhede, Dipalee D.
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (18) : 9752 - 9761
  • [39] High-performance of the ZnO/NiS nanocomposite electrode materials for supercapacitor
    Godlaveeti, Sreenivasa Kumar
    Ramana, G. Venkata
    Sangaraju, Sambasivam
    Mohammed, Abdallah A. A.
    Arla, Sai Kumar
    Nirlakalla, Ravi
    Somala, Adinarayana Reddy
    Nagireddy, Ramamanohar Reddy
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 680
  • [40] High-performance integrated supercapacitor based on glycerol-Mo hydrogel
    Xin, Qing
    Chu, Xiaojie
    Wang, Lin
    Yan, Wensheng
    Zang, Yue
    Lin, Jun
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 921