Generalized independence and domination in graphs

被引:4
|
作者
Borowiecki, M [1 ]
Michalak, D [1 ]
机构
[1] Tech Univ, Inst Math, PL-65246 Zielona Gora, Poland
关键词
dominating set; independent set; hereditary property of graphs; vertex partition;
D O I
10.1016/S0012-365X(98)00092-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to introduce various concepts of P-domination, which generalize and unify different well-known kinds of domination in graphs. We generalize a result of Lovasz concerning the existence of a partition of a set of vertices of G into independent subsets and a result of Favaron concerning a property of S-k-dominating sets. Gallai-type equalities for the strong P-domination number are proved, which generalize Nieminen's result. Copyright (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:51 / 56
页数:6
相关论文
共 50 条
  • [1] INDEPENDENCE AND DOMINATION IN POLYGON GRAPHS
    ELMALLAH, ES
    STEWART, LK
    DISCRETE APPLIED MATHEMATICS, 1993, 44 (1-3) : 65 - 77
  • [2] Generalized domination and efficient domination in graphs
    Bange, DW
    Barkauskas, AE
    Host, LH
    Slater, PJ
    DISCRETE MATHEMATICS, 1996, 159 (1-3) : 1 - 11
  • [3] Generalized domination and efficient domination in graphs
    Department of Mathematics, University of Wisconsin-LaCrosse, LaCrosse, WI 54601, United States
    不详
    Discrete Math, 1-3 (1-11):
  • [4] A note on domination and independence-domination numbers of graphs
    Milanic, Martin
    ARS MATHEMATICA CONTEMPORANEA, 2013, 6 (01) : 89 - 97
  • [5] On 2-domination and independence domination numbers of graphs
    Hansberg, Adriana
    Volkmann, Lutz
    ARS COMBINATORIA, 2011, 101 : 405 - 415
  • [6] Independence and domination separation on chessboard graphs
    Chatham, R. Douglas
    Doyle, Maureen
    Fricke, Gerd H.
    Reitmann, Jon
    Skaggs, R. Duane
    Wolff, Matthew
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2009, 68 : 3 - 17
  • [7] Independence and k-domination in graphs
    Hansberg, Adriana
    Meierling, Dirk
    Volkmann, Lutz
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (05) : 905 - 915
  • [8] INDEPENDENCE AND DOMINATION IN PATH GRAPHS OF TREES
    Niepel, Ludovit
    Cerny, Anton
    COMPUTING AND INFORMATICS, 2008, 27 (04) : 581 - 591
  • [9] Domination in generalized Petersen graphs
    Bohdan Zelinka
    Czechoslovak Mathematical Journal, 2002, 52 : 11 - 16
  • [10] Generalized perfect domination in graphs
    Chaluvaraju, B.
    Vidya, K. A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 292 - 301