Critical Quantum Metrology with a Finite-Component Quantum Phase Transition

被引:144
|
作者
Garbe, Louis [1 ]
Bina, Matteo [2 ]
Keller, Arne [1 ,3 ]
Paris, Matteo G. A. [2 ]
Felicetti, Simone [4 ]
机构
[1] Univ Paris, Lab Mat & Phinomenes Quant, UMR 7162, CNRS, Paris, France
[2] Univ Milan, Dipartimento Fis Aldo Pontremoli, Uantum Technol Lab, I-20133 Milan, Italy
[3] Univ Paris Saclay, F-91405 Orsay, France
[4] Univ Autonoma Madrid, Dept Fis Teor, Mat Condensada & Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain
基金
欧洲研究理事会;
关键词
D O I
10.1103/PhysRevLett.124.120504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Physical systems close to a quantum phase transition exhibit a divergent susceptibility, suggesting that an arbitrarily high precision may be achieved by exploiting quantum critical systems as probes to estimate a physical parameter. However, such an improvement in sensitivity is counterbalanced by the closing of the energy gap, which implies a critical slowing down and an inevitable growth of the protocol duration. Here, we design different metrological protocols that exploit the superradiant phase transition of the quantum Rabi model, a finite-component system composed of a single two-level atom interacting with a single bosonic mode. We show that, in spite of the critical slowing down, critical quantum optical probes can achieve a quantum-enhanced time scaling of the sensitivity in frequency-estimation protocols.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Quantum phase transition in the Dicke model with critical and noncritical entanglement
    Bakemeier, L.
    Alvermann, A.
    Fehske, H.
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [32] Quantum Optical Metrology of Correlated Phase and Loss
    Birchall, Patrick M.
    Allen, Euan J.
    Stace, Thomas M.
    O'Brien, Jeremy L.
    Matthews, Jonathan C. F.
    Cable, Hugo
    PHYSICAL REVIEW LETTERS, 2020, 124 (14)
  • [33] Microscopic analysis of the superconducting quantum critical point: Finite-temperature crossovers in transport near a pair-breaking quantum phase transition
    Shah, Nayana
    Lopatin, Andrei
    PHYSICAL REVIEW B, 2007, 76 (09)
  • [34] Nonequilibrium Quantum Criticality and Non-Markovian Environment: Critical Exponent of a Quantum Phase Transition
    Nagy, D.
    Domokos, P.
    PHYSICAL REVIEW LETTERS, 2015, 115 (04)
  • [35] Local quantum phase transition in the pseudogap Anderson model: scales, scaling and quantum critical dynamics
    Glossop, MT
    Logan, DE
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (44) : 7519 - 7554
  • [36] QUANTUM DISCORD, DECOHERENCE AND QUANTUM PHASE TRANSITION
    Bose, Indrani
    Pal, Amit Kumar
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (1-3):
  • [37] Rescuing a Quantum Phase Transition with Quantum Noise
    Zhang, Gu
    Novais, E.
    Baranger, Harold U.
    PHYSICAL REVIEW LETTERS, 2017, 118 (05)
  • [38] Quantum phase transition in the quantum compass model
    Chen, Han-Dong
    Fang, Chen
    Hu, Jiangping
    Yao, Hong
    PHYSICAL REVIEW B, 2007, 75 (14):
  • [39] Quantum phase transition in coupled quantum dots
    Andrei, N
    Zimányi, GT
    Schön, G
    PHYSICAL REVIEW B, 1999, 60 (08): : R5125 - R5128
  • [40] Quantum phase transition in quantum dot trimers
    Mitchell, Andrew K.
    Jarrold, Thomas F.
    Logan, David E.
    PHYSICAL REVIEW B, 2009, 79 (08):