Critical Quantum Metrology with a Finite-Component Quantum Phase Transition

被引:144
|
作者
Garbe, Louis [1 ]
Bina, Matteo [2 ]
Keller, Arne [1 ,3 ]
Paris, Matteo G. A. [2 ]
Felicetti, Simone [4 ]
机构
[1] Univ Paris, Lab Mat & Phinomenes Quant, UMR 7162, CNRS, Paris, France
[2] Univ Milan, Dipartimento Fis Aldo Pontremoli, Uantum Technol Lab, I-20133 Milan, Italy
[3] Univ Paris Saclay, F-91405 Orsay, France
[4] Univ Autonoma Madrid, Dept Fis Teor, Mat Condensada & Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain
基金
欧洲研究理事会;
关键词
D O I
10.1103/PhysRevLett.124.120504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Physical systems close to a quantum phase transition exhibit a divergent susceptibility, suggesting that an arbitrarily high precision may be achieved by exploiting quantum critical systems as probes to estimate a physical parameter. However, such an improvement in sensitivity is counterbalanced by the closing of the energy gap, which implies a critical slowing down and an inevitable growth of the protocol duration. Here, we design different metrological protocols that exploit the superradiant phase transition of the quantum Rabi model, a finite-component system composed of a single two-level atom interacting with a single bosonic mode. We show that, in spite of the critical slowing down, critical quantum optical probes can achieve a quantum-enhanced time scaling of the sensitivity in frequency-estimation protocols.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Effects of local decoherence on quantum critical metrology
    Chen, Chong
    Wang, Ping
    Liu, Ren-Bao
    PHYSICAL REVIEW A, 2021, 104 (02)
  • [22] Multiparameter critical quantum metrology with impurity probes
    Mihailescu, George
    Bayat, Abolfazl
    Campbell, Steve
    Mitchell, Andrew K.
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (03):
  • [23] Experimental critical quantum metrology with the Heisenberg scaling
    Liu, Ran
    Chen, Yu
    Jiang, Min
    Yang, Xiaodong
    Wu, Ze
    Li, Yuchen
    Yuan, Haidong
    Peng, Xinhua
    Du, Jiangfeng
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [24] Temperature-enhanced critical quantum metrology
    Ostermann, Laurin
    Gietka, Karol
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [25] Effective critical points in finite quantum phase transitional systems
    Williams, E.
    Casperson, R. J.
    Werner, V.
    PHYSICAL REVIEW C, 2010, 82 (05):
  • [26] Emergent symmetry in quantum phase transition: From deconfined quantum critical point to gapless quantum spin liquid
    Liu, Wen -Yuan
    Gong, Shou-Shu
    Chen, Wei-Qiang
    Gu, Zheng-Cheng
    SCIENCE BULLETIN, 2024, 69 (02) : 190 - 196
  • [27] Joint estimation of phase and phase diffusion for quantum metrology
    Vidrighin, Mihai D.
    Donati, Gaia
    Genoni, Marco G.
    Jin, Xian-Min
    Kolthammer, W. Steven
    Kim, M. S.
    Datta, Animesh
    Barbieri, Marco
    Walmsley, Ian A.
    NATURE COMMUNICATIONS, 2014, 5
  • [28] Joint estimation of phase and phase diffusion for quantum metrology
    Mihai D. Vidrighin
    Gaia Donati
    Marco G. Genoni
    Xian-Min Jin
    W. Steven Kolthammer
    M.S. Kim
    Animesh Datta
    Marco Barbieri
    Ian A. Walmsley
    Nature Communications, 5
  • [29] A quantum critical trio: Solvable models of finite temperature crossovers near quantum phase transitions
    Sachdev, S
    STRONGLY CORRELATED MAGNETIC AND SUPERCONDUCTING SYSTEMS, 1997, 478 : 33 - 87
  • [30] Bose system critical dynamics near quantum phase transition
    Vasin, M. G.
    Vinokur, V. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 575