Domain wall formation in the Cahn-Hilliard-Cook equation

被引:3
|
作者
Dziarmaga, J
Sadzikowski, M
机构
[1] Los Alamos Natl Lab, Theory Div T6, Los Alamos, NM 87545 USA
[2] Jagiellonian Univ, Inst Phys, Krakow, Poland
[3] Inst Nucl Phys, PL-31342 Krakow, Poland
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 03期
关键词
D O I
10.1103/PhysRevE.63.036112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Formation of domain walls during phase-separating transition in the Cahn-Hilliard-Cook equation is studied. Density of domain wall scales like a sixth root, of quench rate for equal concentrations and like a square root of quench rate for unequal concentrations of components. For a slow inhomogeneous transition, the density is linear in a velocity of temperature front.
引用
收藏
页码:361121 / 361126
页数:6
相关论文
共 50 条
  • [21] Rigorous embedding of cell dynamics simulations in the Cahn-Hilliard-Cook framework: Imposing stability and isotropy
    Sevink, G. J. A.
    PHYSICAL REVIEW E, 2015, 91 (05):
  • [22] An IMEX finite element method for a linearized Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise
    Zouraris, Georgios E.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 5555 - 5575
  • [23] Deviation of early stage of spinodal decomposition from the Cahn-Hilliard-Cook theory observed in an isotopic polymer blend
    Muller, G
    Schwahn, D
    Eckerlebe, H
    Rieger, J
    Springer, T
    PHYSICA B-CONDENSED MATTER, 1997, 234 : 245 - 246
  • [24] A direct meshless local collocation method for solving stochastic Cahn-Hilliard-Cook and stochastic Swift-Hohenberg equations
    Abbaszadeh, Mostafa
    Khodadadian, Amirreza
    Parvizi, Maryam
    Dehghan, Mehdi
    Heitzinger, Clemens
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 98 : 253 - 264
  • [25] Beyond Cahn-Hilliard-Cook ordering theory: Early time behavior of spatial-symmetry-breaking phase transition kinetics
    Barros, Kipton
    Dominguez, Rachele
    Klein, W.
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [26] A multilevel Monte Carlo finite element method for the stochastic Cahn–Hilliard–Cook equation
    Amirreza Khodadadian
    Maryam Parvizi
    Mostafa Abbaszadeh
    Mehdi Dehghan
    Clemens Heitzinger
    Computational Mechanics, 2019, 64 : 937 - 949
  • [27] ON THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    ZHENG, SM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 96 (04) : 339 - 357
  • [28] Dynamics of domain walls governed by the convective Cahn-Hilliard equation
    Podolny, A
    Zaks, MA
    Rubinstein, BY
    Golovin, AA
    Nepomnyashchy, AA
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 201 (3-4) : 291 - 305
  • [29] Stochastic Cahn-Hilliard equation
    DaPrato, G
    Debussche, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (02) : 241 - 263
  • [30] Cahn–Hilliard equation with two spatial variables. Pattern formation
    A. N. Kulikov
    D. A. Kulikov
    Theoretical and Mathematical Physics, 2021, 207 : 782 - 798