On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision

被引:160
|
作者
Ochs, Peter [1 ,2 ]
Dosovitskiy, Alexey [1 ,2 ]
Brox, Thomas [1 ,2 ]
Pock, Thomas [3 ,4 ]
机构
[1] Univ Freiburg, Dept Comp Sci, D-79110 Freiburg, Germany
[2] Univ Freiburg, BIOSS Ctr Biol Signalling Studies, D-79110 Freiburg, Germany
[3] Graz Univ Technol, Inst Comp Graph & Vis, A-8010 Graz, Austria
[4] AIT Austrian Inst Technol GmbH, Digital Safety & Secur Dept, A-1220 Vienna, Austria
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2015年 / 8卷 / 01期
基金
奥地利科学基金会;
关键词
iteratively reweighted algorithm; majorization-minimization; IRL1; IRLS; nonsmooth nonconvex optimization; Kurdyka-Lojasiewicz inequality; computer vision; nonconvex total generalized variation; PRIMAL-DUAL ALGORITHMS; MINIMIZATION; RECONSTRUCTION; CONVERGENCE; RESTORATION; RECOVERY;
D O I
10.1137/140971518
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Natural image statistics indicate that we should use nonconvex norms for most regularization tasks in image processing and computer vision. Still, they are rarely used in practice due to the challenge of optimization. Recently, iteratively reweighed l(1) minimization (IRL1) has been proposed as a way to tackle a class of nonconvex functions by solving a sequence of convex l(2)-l(1) problems. We extend the problem class to the sum of a convex function and a (nonconvex) nondecreasing function applied to another convex function. The proposed algorithm sequentially optimizes suitably constructed convex majorizers. Convergence to a critical point is proved when the Kurdyka-Lojasiewicz property and additional mild restrictions hold for the objective function. The efficiency and practical importance of the algorithm are demonstrated in computer vision tasks such as image denoising and optical flow. Most applications seek smooth results with sharp discontinuities. These are achieved by combining nonconvexity with higher order regularization.
引用
收藏
页码:331 / 372
页数:42
相关论文
共 50 条
  • [41] Global Convergence of ADMM in Nonconvex Nonsmooth Optimization
    Yu Wang
    Wotao Yin
    Jinshan Zeng
    Journal of Scientific Computing, 2019, 78 : 29 - 63
  • [42] NONSMOOTH ANALYSIS AND OPTIMIZATION FOR A CLASS OF NONCONVEX MAPPINGS
    REILAND, TW
    CHOU, JH
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1985, 259 : 204 - 218
  • [43] An inexact ADMM for separable nonconvex and nonsmooth optimization
    Bai, Jianchao
    Zhang, Miao
    Zhang, Hongchao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 90 (02) : 445 - 479
  • [44] Piecewise linear approximations in nonconvex nonsmooth optimization
    M. Gaudioso
    E. Gorgone
    M. F. Monaco
    Numerische Mathematik, 2009, 113 : 73 - 88
  • [45] Stochastic subgradient algorithm for nonsmooth nonconvex optimization
    Yalcin, Gulcin Dinc
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (01) : 317 - 334
  • [46] Bundle Method for Nonconvex Nonsmooth Constrained Optimization
    Minh Ngoc Dao
    JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 1061 - 1090
  • [47] The exact penalty map for nonsmooth and nonconvex optimization
    Burachik, Regina S.
    Iusem, Alfredo N.
    Melo, Jefferson G.
    OPTIMIZATION, 2015, 64 (04) : 717 - 738
  • [48] A Note on the Existence of Nonsmooth Nonconvex Optimization Problems
    Kazufumi Ito
    Karl Kunisch
    Journal of Optimization Theory and Applications, 2014, 163 : 697 - 706
  • [49] A Note on the Existence of Nonsmooth Nonconvex Optimization Problems
    Ito, Kazufumi
    Kunisch, Karl
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (03) : 697 - 706
  • [50] Piecewise linear approximations in nonconvex nonsmooth optimization
    Gaudioso, M.
    Gorgone, E.
    Monaco, M. F.
    NUMERISCHE MATHEMATIK, 2009, 113 (01) : 73 - 88