Missing value imputation using unsupervised machine learning techniques

被引:46
|
作者
Raja, P. S. [1 ]
Thangavel, K. [1 ]
机构
[1] Periyar Univ, Dept Comp Sci, Salem, Tamil Nadu, India
关键词
K-means; Fuzzy C-means; Rough K-means; Machine learning; Missing values; Imputation; ALGORITHMS; SET;
D O I
10.1007/s00500-019-04199-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In data mining, preprocessing is one of the essential processes which involves data normalization, noise removal, handling missing values, etc. This paper focuses on handling missing values using unsupervised machine learning techniques. Soft computation approaches are combined with the clustering techniques to form a novel method to handle the missing values, which help us to overcome the problems of inconsistency. Rough K-means centroid-based imputation method is proposed and compared with K-means centroid-based imputation method, fuzzy C-means centroid-based imputation method, K-means parameter-based imputation method, fuzzy C-means parameter-based imputation method, and rough K-means parameter-based imputation methods. The experimental analysis is carried out on four benchmark datasets, viz. Dermatology, Pima, Wisconsin, and Yeast datasets, which have taken from UCI data repository. The proposed method proves the efficacy of different datasets, and the results are also promising one.
引用
收藏
页码:4361 / 4392
页数:32
相关论文
共 50 条
  • [21] Missing value imputation using genetic algorithm
    Hengpraphrom, Kairijng
    Wlchian, Sageemas Na
    Meesad, Phayijng
    [J]. ICIC Express Letters, 2011, 5 (02): : 355 - 360
  • [22] Animal Behavior Analysis Using Unsupervised Machine Learning Techniques
    Liu, Jiefei
    Bailey, Derek W.
    Cao, Huiping
    Son, Tran Cao
    Tobin, Colin T.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2023, 101
  • [23] Animal Behavior Analysis Using Unsupervised Machine Learning Techniques
    Liu, Jiefei
    Bailey, Derek W.
    Cao, Huiping
    Son, Tran Cao
    Tobin, Colin T.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2023, 101 : 2 - 2
  • [25] Machine Learning Based Missing Data Imputation in Categorical Datasets
    Ishaq, Muhammad
    Zahir, Sana
    Iftikhar, Laila
    Bulbul, Mohammad Farhad
    Rho, Seungmin
    Lee, Mi Young
    [J]. IEEE ACCESS, 2024, 12 : 88332 - 88344
  • [26] ExtraImpute: A Novel Machine Learning Method for Missing Data Imputation
    Alabadla, Mustafa
    Sidi, Fatimah
    Ishak, Iskandar
    Ibrahim, Hamidah
    Affendey, Lilly Suriani
    Hamdan, Hazlina
    [J]. JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2022, 13 (05) : 470 - 476
  • [27] Missing value estimation using clustering and deep learning within multiple imputation framework
    Samad, Manar D.
    Abrar, Sakib
    Diawara, Norou
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 249
  • [28] Microarray Missing Value Imputation: A Regularized Local Learning Method
    Wang, Aiguo
    Chen, Ye
    An, Ning
    Yang, Jing
    Li, Lian
    Jiang, Lili
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (03) : 980 - 993
  • [29] Optimization of Missing Value Imputation using Reinforcement Programming
    Rachmawan, Irene Erlyn Wina
    Barakbah, Ali Ridho
    [J]. 2015 International Electronics Symposium (IES), 2015, : 128 - 133
  • [30] A Review On Missing Value Estimation Using Imputation Algorithm
    Armina, Roslan
    Zain, Azlan Mohd
    Ali, Nor Azizah
    Sallehuddin, Roselina
    [J]. 6TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL MATHEMATICS (ICCSCM 2017), 2017, 892