Optimization of Missing Value Imputation using Reinforcement Programming

被引:0
|
作者
Rachmawan, Irene Erlyn Wina [1 ]
Barakbah, Ali Ridho [2 ]
机构
[1] Elect Engn Polytech Inst Surabaya, Grad Sch Appl Master Program, Surabaya, Indonesia
[2] Elect Engn Polytech Inst Surabaya, Surabaya, Indonesia
关键词
Missing value; imputation; Data Preprocessing; Reinforcement Programming; Machine Learning; NETWORKS; MODELS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Missing value imputation is a crucial and challenging research topic in data mining because the data in real life are often contains missing value. The incorrect way to handle missing value will lead major problem in data mining processing to produce a new knowledge. One technique to solve Missing value imputation is by using machine learning algorithm. In this paper, we will present a new approach for missing data imputation using Reinforcement Programming to deal with incomplete data by filling the incompleteness data with considering exploration and exploitation of its environment to learn the data pattern. The experimental result demonstrates that Reinforcement Programming runs well and has a great result of SSE of new data with assigned value and shows effectiveness computational time than the other five imputation methods used as benchmark.
引用
收藏
页码:128 / 133
页数:6
相关论文
共 50 条
  • [1] Optimization of missing value imputation for neural networks
    Han, Jongmin
    Kang, Seokho
    [J]. INFORMATION SCIENCES, 2023, 649
  • [2] Missing Value Imputation Using Correlation Coefficient
    Manna, Sweta
    Pati, Soumen Kumar
    [J]. COMPUTATIONAL INTELLIGENCE IN PATTERN RECOGNITION, CIPR 2020, 2020, 1120 : 551 - 558
  • [3] Multiple Imputation for Missing Data Using Genetic Programming
    Cao Truong Tran
    Zhang, Mengjie
    Andreae, Peter
    [J]. GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 583 - 590
  • [4] A Review On Missing Value Estimation Using Imputation Algorithm
    Armina, Roslan
    Zain, Azlan Mohd
    Ali, Nor Azizah
    Sallehuddin, Roselina
    [J]. 6TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL MATHEMATICS (ICCSCM 2017), 2017, 892
  • [5] An Optimization Algorithm for Missing Value Imputation in Microarray Based on Integrated Information
    Liu, Feng
    Zhang, Yiding
    Liu, Zeming
    Gao, Meng
    [J]. FUZZY SYSTEMS AND DATA MINING V (FSDM 2019), 2019, 320 : 55 - 64
  • [6] Missing value imputation on missing completely at random data using multilayer perceptrons
    Silva-Ramirez, Esther-Lydia
    Pino-Mejias, Rafael
    Lopez-Coello, Manuel
    Cubiles-de-la-Vega, Maria-Dolores
    [J]. NEURAL NETWORKS, 2011, 24 (01) : 121 - 129
  • [7] Missing value imputation using unsupervised machine learning techniques
    Raja, P. S.
    Thangavel, K.
    [J]. SOFT COMPUTING, 2020, 24 (06) : 4361 - 4392
  • [8] Missing value imputation using unsupervised machine learning techniques
    P. S. Raja
    K. Thangavel
    [J]. Soft Computing, 2020, 24 : 4361 - 4392
  • [9] Missing value imputation in a data matrix using the regularised singular value decomposition
    Arciniegas-Alarcon, Sergio
    Garcia-Pena, Marisol
    Krzanowski, Wojtek J.
    Rengifo, Camilo
    [J]. METHODSX, 2023, 11
  • [10] Gaussian processes for missing value imputation
    Jafrasteh, Bahram
    Hernandez-Lobato, Daniel
    Lubian-Lopez, Simon Pedro
    Benavente-Fernandez, Isabel
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 273