Exploiting reliable pseudo-labels for unsupervised domain adaptive person re-identification

被引:1
|
作者
Zhao, Pengfei [1 ]
Huang, Lei [1 ]
Zhang, Wenfeng [1 ]
Li, Xiaojing [1 ]
Wei, Zhiqiang [1 ]
机构
[1] Ocean Univ China, Fac Informat Sci & Engn, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Person re-identification; Reliable pseudo-labels; Adaptive dynamic clustering; Cross-camera similarity evaluation; ADAPTATION; SIMILARITY; NETWORK;
D O I
10.1016/j.neucom.2021.12.050
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Person re-identification, getting impressive performance under the single-domain setting, often suffers huge performance drop when deploying to the unseen target domain owing to domain gap. Current research mainly focuses on unsupervised domain adaptation to alleviate the domain gap, and the methods by clustering the target-domain samples have achieved significant results. However, some inaccurate pseudo-labels, i.e., noisy pseudo-labels, may be generated on clustering, which will seriously affect the performance of the model. In order to solve the above problem, we propose a novel unsupervised domain adaptive person re-identification method by exploiting reliable pseudo-labels (RPL) from two aspects, i.e., adaptive dynamic clustering (ADC) and cross-camera similarity evaluation (CCSE). Specifically, firstly, for the methods based on the density-based clustering algorithm, we propose the adaptive dynamic clustering which calculates the clustering radius adaptively and dynamically to obtain more reasonable clustering results in the iterative optimization of the model. Next, for noisy pseudo-labels caused by small interclass variations under the same camera, we propose the cross-camera similarity evaluation to filter out these noises to further improve the discrimination of the model. Extensive experiments on three publicly available large-scale datasets show that the proposed method can achieve state-of-the-art performance on unsupervised domain adaptation person re-identification. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:581 / 592
页数:12
相关论文
共 50 条
  • [31] Adaptive Exploration for Unsupervised Person Re-identification
    Ding, Yuhang
    Fan, Hehe
    Xu, Mingliang
    Yang, Yi
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2020, 16 (01)
  • [32] DCN-Based unsupervised domain adaptive person re-identification method
    Yang Hai-lun
    Wang Jin-cong
    Ren Hong-e
    Tao Rui
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (11) : 1573 - 1582
  • [33] AdaDC: Adaptive Deep Clustering for Unsupervised Domain Adaptation in Person Re-Identification
    Li, Shihua
    Yuan, Mingkuan
    Chen, Jie
    Hu, Zhilan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3825 - 3838
  • [34] Unsupervised domain adaptive person re-identification via camera penalty learning
    Zhu, Xiaodi
    Li, Yanfeng
    Sun, Jia
    Chen, Houjin
    Zhu, Jinlei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (10) : 15215 - 15232
  • [35] Distance constraint between features for unsupervised domain adaptive person re-identification
    Li, Zhihao
    Han, Bing
    Gao, Xinbo
    Hou, Biao
    Liu, Zongyuan
    NEUROCOMPUTING, 2021, 462 : 113 - 122
  • [36] Unsupervised domain adaptive person re-identification via camera penalty learning
    Xiaodi Zhu
    Yanfeng Li
    Jia Sun
    Houjin Chen
    Jinlei Zhu
    Multimedia Tools and Applications, 2021, 80 : 15215 - 15232
  • [37] Unsupervised Domain Adaptation Person Re-Identification Method Based on Softened Pseudo Labeling
    Huang, Tongyuan
    Chen, Liao
    PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [38] INTENSIFYING THE CONSISTENCY OF PSEUDO LABEL REFINEMENT FOR UNSUPERVISED DOMAIN ADAPTATION PERSON RE-IDENTIFICATION
    Zha, Linfan
    Chen, Yanming
    Zhou, Peng
    Zhang, Yiwen
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1547 - 1552
  • [39] Online Unsupervised Domain Adaptation for Person Re-identification
    Rami, Hamza
    Ospici, Matthieu
    Lathuiliere, Stephane
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3829 - 3838
  • [40] Adaptive Label Allocation for Unsupervised Person Re-Identification
    Song, Yihu
    Liu, Shuaishi
    Yu, Siyang
    Zhou, Siyu
    ELECTRONICS, 2022, 11 (05)