Adaptive Exploration for Unsupervised Person Re-identification

被引:110
|
作者
Ding, Yuhang [1 ]
Fan, Hehe [2 ]
Xu, Mingliang [3 ]
Yang, Yi [2 ]
机构
[1] Southern Univ Sci & Technol, SUSTech UTS Joint Ctr CIS, Shenzhen, Peoples R China
[2] Univ Technol Sydney, Ctr Artificial Intelligence, 15 Broadway, Sydney, NSW 2007, Australia
[3] Zhengzhou Univ, Sch Informat Engn, Zhengzhou, Henan, Peoples R China
关键词
Person re-identification; unsupervised learning; domain adaptation; deep learning; DOMAIN ADAPTATION;
D O I
10.1145/3369393
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to domain bias, directly deploying a deep person re-identification (re-ID) model trained on one dataset often achieves considerably poor accuracy on another dataset. In this article, we propose an Adaptive Exploration (AE) method to address the domain-shift problem for re-ID in an unsupervised manner. Specifically, in the target domain, the re-ID model is inducted to (1) maximize distances between all person images and (2) minimize distances between similar person images. In the first case, by treating each person image as an individual class, a non-parametric classifier with a feature memory is exploited to encourage person images to move far away from each other. In the second case, according to a similarity threshold, our method adaptively selects neighborhoods for each person image in the feature space. By treating these similar person images as the same class, the non-parametric classifier forces them to stay closer. However, a problem of the adaptive selection is that, when an image has too many neighborhoods, it is more likely to attract other images as its neighborhoods. As a result, a minority of images may select a large number of neighborhoods while a majority of images has only a few neighborhoods. To address this issue, we additionally integrate a balance strategy into the adaptive selection. We evaluate our methods with two protocols. The first one is called "target-only re-ID", in which only the unlabeled target data is used for training. The second one is called "domain adaptive re-ID", in which both the source data and the target data are used during training. Experimental results on large-scale re-ID datasets demonstrate the effectiveness of our method. Our code has been released at https://github.com/dyh127/Adaptive-Exploration-for-Unsupervised-Person-Re-Identification.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Adaptive Label Allocation for Unsupervised Person Re-Identification
    Song, Yihu
    Liu, Shuaishi
    Yu, Siyang
    Zhou, Siyu
    ELECTRONICS, 2022, 11 (05)
  • [2] Adaptive Memorization With Group Labels for Unsupervised Person Re-Identification
    Peng, Jinjia
    Jiang, Guangqi
    Wang, Huibing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (10) : 5802 - 5813
  • [3] Domain Adaptive Attention Learning for Unsupervised Person Re-Identification
    Huang, Yangru
    Peng, Peixi
    Jin, Yi
    Li, Yidong
    Xing, Junliang
    Ge, Shiming
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 11069 - 11076
  • [4] Unsupervised Tracklet Person Re-Identification
    Li, Minxian
    Zhu, Xiatian
    Gong, Shaogang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) : 1770 - 1782
  • [5] Dual Attention Network for Unsupervised Domain Adaptive Person Re-Identification
    Chen, Haiqin
    Wang, Hongyuan
    Ding, Zongyuan
    Li, Penghui
    IEEE ACCESS, 2023, 11 : 88184 - 88192
  • [6] UNSUPERVISED DOMAIN-ADAPTIVE PERSON RE-IDENTIFICATION BASED ON ATTRIBUTES
    Zhu, Xiangping
    Morerio, Pietro
    Murino, Vittorio
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 4110 - 4114
  • [7] Adaptive Attention-Aware Network for unsupervised person re-identification
    Zhang, Wenfeng
    Wei, Zhiqiang
    Huang, Lei
    Xie, Kezhen
    Qin, Qibing
    NEUROCOMPUTING, 2020, 411 : 20 - 31
  • [8] Delving into Probabilistic Uncertainty for Unsupervised Domain Adaptive Person Re-identification
    Han, Jian
    Li, Ya-Li
    Wang, Shengjin
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 790 - 798
  • [9] Unsupervised Domain Adaptive Person Re-Identification via Intermediate Domains
    Xie, Haonan
    Luo, Hao
    Gu, Jianyang
    Jiang, Wei
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [10] Learning Feature Fusion for Unsupervised Domain Adaptive Person Re-identification
    Ding, Jin
    Zhou, Xue
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2613 - 2619