Predictive spatio-temporal model for spatially sparse global solar radiation data

被引:26
|
作者
Andre, Maina [1 ]
Dabo-Niang, Sophie [2 ]
Soubdhan, Ted [1 ]
Ould-Baba, Hanany [1 ]
机构
[1] Univ French West Indies, Campus Fouillole, Pointe A Pitre 971159, Guadeloupe, France
[2] Univ Lille 3, INRIA Lille Nord France, MODAL Team, Lab EQUIPPE, F-59653 Villeneuve Dascq, France
关键词
Satio-temporal vector autoregressive processes; Global solar radiation; Stations' spatial ordering; Selection of temporal order; Short time forecasting;
D O I
10.1016/j.energy.2016.06.004
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper introduces a new approach for the forecasting of solar radiation series at a located station for very short time scale. We built a multivariate model in using few stations (3 stations) separated with irregular distances from 26 km to 56 km. The proposed model is a spatio temporal vector autoregressive VAR model specifically designed for the analysis of spatially sparse spatio-temporal data. This model differs from classic linear models in using spatial and temporal parameters where the available predictors are the lagged values at each station. A spatial structure of stations is defined by the sequential introduction of predictors in the model. Moreover, an iterative strategy in the process of our model will select the necessary stations removing the uninteresting predictors and also selecting the optimal p-order. We studied the performance of this model. The metric error, the relative root mean squared error (rRMSE), is presented at different short time scales. Moreover, we compared the results of our model to simple and well known persistence model and those found in literature. (C 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:599 / 608
页数:10
相关论文
共 50 条
  • [41] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [42] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    MATHEMATICS, 2022, 10 (10)
  • [43] Spatio-Temporal Data Construction
    Le, Hai Ha
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [44] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [45] Deep Learning Model for Global Spatio-Temporal Image Prediction
    Nikezic, Dusan P.
    Ramadani, Uzahir R.
    Radivojevic, Dusan S.
    Lazovic, Ivan M.
    Mirkov, Nikola S.
    MATHEMATICS, 2022, 10 (18)
  • [46] Spatio-temporal reconciliation of solar forecasts
    Di Fonzo, Tommaso
    Girolimetto, Daniele
    SOLAR ENERGY, 2023, 251 : 13 - 29
  • [47] A tensor-based interpolation method for sparse spatio-temporal field data
    Li, D. S.
    Yang, L.
    Yu, Z. Y.
    Hu, Y.
    Yuan, L. W.
    JOURNAL OF SPATIAL SCIENCE, 2020, 65 (02) : 307 - 325
  • [48] Nonparametric Mixture of Sparse Regressions on Spatio-Temporal Data - An Application to Climate Prediction
    Liu, Yumin
    Chen, Junxiang
    Ganguly, Auroop
    Dy, Jennifer
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2556 - 2564
  • [49] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116
  • [50] A probabilistic model based predictive spatio-temporal range query processing
    School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
    不详
    Ruan Jian Xue Bao/Journal of Software, 2007, 18 (02): : 279 - 290