Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space

被引:11
|
作者
Bause, Markus [1 ]
Radu, Florin A. [2 ]
Koecher, Uwe [1 ]
机构
[1] Helmut Schmidt Univ, Fac Mech Engn, Holstenhofweg 85, D-220433 Hamburg, Germany
[2] Univ Bergen, Dept Math, Allegaten 41, N-50520 Bergen, Norway
关键词
DISCONTINUOUS GALERKIN METHOD; SUBSURFACE FLOW; EULER IMPLICIT; ORDER; EQUATION; CONVERGENCE; CONVECTION; TRANSPORT; SCHEME;
D O I
10.1007/s00211-017-0894-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational time discretization schemes are getting of increasing importance for the accurate numerical approximation of transient phenomena. The applicability and value of mixed finite element methods in space for simulating transport processes have been demonstrated in a wide class of works. We consider a family of continuous Galerkin-Petrov time discretization schemes that is combined with a mixed finite element approximation of the spatial variables. The existence and uniqueness of the semidiscrete approximation and of the fully discrete solution are established. For this, the Banach-Neas-Babuka theorem is applied in a non-standard way. Error estimates with explicit rates of convergence are proved for the scalar and vector-valued variable. An optimal order estimate in space and time is proved by duality techniques for the scalar variable. The convergence rates are analyzed and illustrated by numerical experiments, also on stochastically perturbed meshes.
引用
收藏
页码:773 / 818
页数:46
相关论文
共 50 条
  • [1] Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space
    Markus Bause
    Florin A. Radu
    Uwe Köcher
    [J]. Numerische Mathematik, 2017, 137 : 773 - 818
  • [2] Higher order time discretizations with ALE finite elements for parabolic problems on evolving surfaces
    Kovacs, Balazs
    Guerra, Christian Andreas Power
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) : 460 - 494
  • [3] Superconvergence of the Space-time Continuous Finite Elements with Interpolated Coefficients for Semilinear Parabolic Problems
    Xiong, Zhiguang
    Chen, Guorong
    Wang, Xueling
    [J]. ADVANCED MANUFACTURING TECHNOLOGY, PTS 1-3, 2011, 314-316 : 1670 - 1675
  • [4] PARABOLIC SINGULARLY PERTURBED PROBLEMS WITH EXPONENTIAL LAYERS: ROBUST DISCRETIZATIONS USING FINITE ELEMENTS IN SPACE ON SHISHKIN MESHES
    Kaland, Lena
    Roos, Hans-Goerg
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2010, 7 (03) : 593 - 606
  • [5] Coupling discontinuous Galerkin and mixed finite element discretizations using mortar finite elements
    Girault, Vivette
    Sun, Shuyu
    Wheeler, Mary F.
    Yotov, Ivan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) : 949 - 979
  • [6] Error analysis of mixed finite elements for cylindrical shells
    Yang, G
    Delfour, MC
    Fortin, M
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1997, 7 (03) : 261 - 277
  • [7] Space-time mixed finite elements for rods
    Atilgan, AR
    Hodges, DH
    Ozbek, MA
    Zhou, W
    [J]. JOURNAL OF SOUND AND VIBRATION, 1996, 192 (03) : 731 - 739
  • [8] Error analysis of mixed finite elements for cylindrical shells
    Geng Yang
    Michel C. Delfour
    Michel Fortin
    [J]. Advances in Computational Mathematics, 1997, 7 : 261 - 277
  • [9] Finite elements in space and time for dynamic contact problems
    Blum, H.
    Jansen, T.
    Rademacher, A.
    Weinert, K.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (10) : 1632 - 1644
  • [10] Decoupling mixed finite elements on hierarchical triangular grids for parabolic problems
    Arraras, A.
    Portero, L.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 319 : 662 - 680