Coupling discontinuous Galerkin and mixed finite element discretizations using mortar finite elements

被引:40
|
作者
Girault, Vivette [1 ]
Sun, Shuyu [2 ]
Wheeler, Mary F. [2 ]
Yotov, Ivan [3 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75230 Paris 05, France
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
discontinuous Galerkin; mixed finite element; flow in porous media; mortar finite element; interface problem;
D O I
10.1137/060671620
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Discontinuous Galerkin (DG) and mixed finite element (MFE) methods are two popular methods that possess local mass conservation. In this paper we investigate DG-DG and DG-MFE domain decomposition couplings using mortar finite elements to impose weak continuity of fluxes and pressures on the interface. The subdomain grids need not match, and the mortar grid may be much coarser, giving a two-scale method. Convergence results in terms of the. ne subdomain scale h and the coarse mortar scale H are established for both types of couplings. In addition, a nonoverlapping parallel domain decomposition algorithm is developed, which reduces the coupled system to an interface mortar problem. The properties of the interface operator are analyzed.
引用
收藏
页码:949 / 979
页数:31
相关论文
共 50 条
  • [1] Coupling discontinuous Galerkin discretizations using mortar finite elements for advection-diffusion-reaction problems
    Kim, Mi-Young
    Wheeler, Mary F.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (01) : 181 - 198
  • [2] A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity
    Phillip Joseph Phillips
    Mary F. Wheeler
    [J]. Computational Geosciences, 2008, 12 : 417 - 435
  • [3] A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity
    Phillips, Phillip Joseph
    Wheeler, Mary F.
    [J]. COMPUTATIONAL GEOSCIENCES, 2008, 12 (04) : 417 - 435
  • [4] COUPLING OF DISCONTINUOUS GALERKIN FINITE ELEMENT AND BOUNDARY ELEMENT METHODS
    Of, G.
    Rodin, G. J.
    Steinbach, O.
    Taus, M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : A1659 - A1677
  • [5] Discontinuous Galerkin Finite Element Simulations with Polyhedral Elements
    Waltz, Caleb
    Lee, Jin-Fa
    [J]. 2012 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2012,
  • [6] Approximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems
    Cockburn, B
    Dawson, C
    [J]. COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) : 505 - 522
  • [7] Approximation of the Velocity by Coupling Discontinuous Galerkin and Mixed Finite Element Methods for Flow Problems
    Bernardo Cockburn
    Clint Dawson
    [J]. Computational Geosciences, 2002, 6 : 505 - 522
  • [8] On the coupling of local discontinuous Galerkin and conforming finite element methods
    Perugia I.
    Schötzau D.
    [J]. Journal of Scientific Computing, 2001, 16 (4) : 411 - 433
  • [9] Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation
    Thirupathi Gudi
    Neela Nataraj
    Amiya K. Pani
    [J]. Journal of Scientific Computing, 2008, 37 : 139 - 161
  • [10] Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation
    Gudi, Thirupathi
    Nataraj, Neela
    Pani, Amiya K.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2008, 37 (02) : 139 - 161