EQUILIBRIUM MEASURES OF MEROMORPHIC SELF-MAPS ON NON-KAHLER MANIFOLDS

被引:8
|
作者
Duc-Viet Vu [1 ,2 ]
机构
[1] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[2] Thang Long Inst Math & Appl Sci, Hanoi, Vietnam
关键词
Topological degree; dynamical degree; equilibrium measure; non-Kahler manifold; Gauduchon metric; TOPOLOGICAL-ENTROPY; ERGODIC PROPERTIES; RATIONAL MAPPINGS; CURRENTS; TRANSFORMATIONS; REGULARIZATION; THEOREM;
D O I
10.1090/tran/7994
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a compact complex non-Kahler manifold and let f be a dominant meromorphic self-map of X. Examples of such maps are self-maps of Hopf manifolds, Calabi-Eckmann manifolds, non-tori nilmanifolds, and their blowups. We prove that if f has a dominant topological degree, then f possesses an equilibrium measure mu satisfying well-known properties as in the Kahler case. The key ingredients are the notion of weakly d.s.h. functions substituting d.s.h. functions in the Kahler case and the use of suitable test functions in Sobolev spaces. A large enough class of holomorphic self-maps with a dominant topological degree on Hopf manifolds is also given.
引用
收藏
页码:2229 / 2250
页数:22
相关论文
共 50 条
  • [31] Holomorphic self-maps of parallelizable manifolds
    Winkelmann J.
    Transformation Groups, 1998, 3 (1) : 103 - 111
  • [32] On self-maps of complex flag manifolds
    Matej Milićević
    Marko Radovanović
    Journal of Fixed Point Theory and Applications, 2023, 25
  • [33] SMALL DEFORMATIONS OF A CLASS OF COMPACT NON-KAHLER MANIFOLDS
    ALESSANDRINI, L
    BASSANELLI, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (04) : 1059 - 1062
  • [34] On self-maps of complex flag manifolds
    Milicevic, Matej
    Radovanovic, Marko
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)
  • [35] QUANTITATIVE AND QUALITATIVE COHOMOLOGICAL PROPERTIES FOR NON-KAHLER MANIFOLDS
    Angella, Daniele
    Tardini, Nicoletta
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 273 - 285
  • [36] The non-abelian Hodge correspondence on some non-Kahler manifolds
    Pan, Changpeng
    Zhang, Chuanjing
    Zhang, Xi
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (11) : 2545 - 2588
  • [37] On non-Kahler compact complex manifolds with balanced and astheno-Kahler metrics
    Latorre, Adela
    Ugarte, Luis
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (01) : 90 - 93
  • [38] Algebraic degrees for iterates of meromorphic self-maps of Pk
    Nguyen, Viet-Anh
    PUBLICACIONS MATEMATIQUES, 2006, 50 (02) : 457 - 473
  • [39] Compactifications of heterotic theory on non-Kahler complex manifolds, I
    Becker, K
    Becker, M
    Dasgupta, K
    Green, PS
    JOURNAL OF HIGH ENERGY PHYSICS, 2003, (04):
  • [40] COMPATIBILITY BETWEEN NON-KaHLER STRUCTURES ON COMPLEX (NIL)MANIFOLDS
    Ornea, L.
    Otiman, A-, I
    Stanciu, M.
    TRANSFORMATION GROUPS, 2023, 28 (04) : 1669 - 1686