EQUILIBRIUM MEASURES OF MEROMORPHIC SELF-MAPS ON NON-KAHLER MANIFOLDS

被引:8
|
作者
Duc-Viet Vu [1 ,2 ]
机构
[1] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[2] Thang Long Inst Math & Appl Sci, Hanoi, Vietnam
关键词
Topological degree; dynamical degree; equilibrium measure; non-Kahler manifold; Gauduchon metric; TOPOLOGICAL-ENTROPY; ERGODIC PROPERTIES; RATIONAL MAPPINGS; CURRENTS; TRANSFORMATIONS; REGULARIZATION; THEOREM;
D O I
10.1090/tran/7994
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a compact complex non-Kahler manifold and let f be a dominant meromorphic self-map of X. Examples of such maps are self-maps of Hopf manifolds, Calabi-Eckmann manifolds, non-tori nilmanifolds, and their blowups. We prove that if f has a dominant topological degree, then f possesses an equilibrium measure mu satisfying well-known properties as in the Kahler case. The key ingredients are the notion of weakly d.s.h. functions substituting d.s.h. functions in the Kahler case and the use of suitable test functions in Sobolev spaces. A large enough class of holomorphic self-maps with a dominant topological degree on Hopf manifolds is also given.
引用
收藏
页码:2229 / 2250
页数:22
相关论文
共 50 条
  • [21] EXAMPLES OF COMPACT NON-KAHLER ALMOST KAHLER-MANIFOLDS
    CORDERO, LA
    FERNANDEZ, M
    DELEON, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 95 (02) : 280 - 286
  • [22] ON A CLASS OF NON-KAHLER COMPLEX-MANIFOLDS
    VAISMAN, I
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (11): : 365 - 368
  • [23] Non-Kahler Calabi-Yau Manifolds
    Tseng, Li-Sheng
    Yau, Shing-Tung
    STRING-MATH 2011, 2012, 85 : 241 - +
  • [24] SELF-MAPS OF FLAG MANIFOLDS
    GLOVER, HH
    HOMER, WD
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 267 (02) : 423 - 434
  • [25] Green Currents for Meromorphic Maps of Compact Kahler Manifolds
    Bayraktar, Turgay
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 970 - 998
  • [26] Geometry and Automorphisms of Non-Kahler Holomorphic Symplectic Manifolds
    Bogomolov, Fedor
    Kurnosov, Nikon
    Kuznetsova, Alexandra
    Yasinsky, Egor
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (16) : 12302 - 12341
  • [27] Morse-type integrals on non-Kahler manifolds
    Kolodziej, Slawomir
    Tosatti, Valentino
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) : 991 - 1004
  • [28] Eigenvalues of the complex Laplacian on compact non-Kahler manifolds
    Khan, Gabriel J. H.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 53 (02) : 233 - 249
  • [29] Geometric transitions, flops and non-Kahler manifolds: II
    Becker, M
    Dasgupta, K
    Katz, S
    Knauf, A
    Tatar, R
    NUCLEAR PHYSICS B, 2006, 738 (1-2) : 124 - 183
  • [30] Geometric transitions, flops and non-Kahler manifolds: I
    Becker, M
    Dasgupta, K
    Knauf, A
    Tatar, R
    NUCLEAR PHYSICS B, 2004, 702 (1-2) : 207 - 268