Moving particle semi-implicit method for fluid simulation with implicitly defined obstacles

被引:0
|
作者
Kanetsuki, Yasutomo [1 ]
Sakamoto, Yasuaki [1 ]
Nakata, Susumu [2 ]
机构
[1] Ritsumeikan Univ, Grad Sch Informat Sci & Engn, Kusatsu, Shiga 5258577, Japan
[2] Ritsumeikan Univ, Coll Informat Sci & Engn, Kusatsu, Shiga 5258577, Japan
关键词
D O I
10.1088/1742-6596/574/1/012079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We developed a particle-based fluid simulation method with obstacles defined in implicit form. Our fluid simulation is based on the Moving Particle Semi-implicit (MPS) method, a typical particle-based algorithm achieving incompressible flow. In general, the particle-based fluid simulation is performed with obstacles that are defined as a set of particles located along the boundaries. We employ the implicit representation for the geometric information of obstacles which requires a new formulation of particle motion at the vicinity of boundaries. The main difficulty of MPS-based simulation with implicit obstacles is the lack of boundary particles that are required for the computation of two quantities: particle number density and particle force determined by pressure field. In our formulation, new definitions of the two quantities giving good estimation of the original ones is developed and incorporated in the MPS algorithm. In addition, we provide a modified algorithm for the construction of discrete linear system specific to the implicit representation for the computation of particle pressure. Our numerical tests show that the proposed approximation techniques provide adequate particle motion at the vicinity of the implicitly defined obstacles.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Numerical simulation of microscopic flow in a fiber bundle using the moving particle semi-implicit method
    Okabe, Tomonaga
    Matsutani, Hiroaki
    Honda, Takashi
    Yashiro, Shigeki
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2012, 43 (10) : 1765 - 1774
  • [42] Modified Moving Particle Semi-Implicit Meshless Method for Incompressible Fluids
    Guo, Jun
    Tao, Zhi
    JOURNAL OF THERMAL SCIENCE, 2004, 13 (03) : 226 - 234
  • [43] Moving particle semi-implicit method with improved pressures stability properties
    Fadafan, Masoud Arami
    Kermani, Masoud-Reza Hessami
    JOURNAL OF HYDROINFORMATICS, 2018, 20 (06) : 1268 - 1285
  • [44] Moving Particle Semi-Implicit Method for Control of Swarm Robotic Systems
    Chua, Joseph Aldrin
    Lim, Laurence Gan
    Augusto, Gerardo
    Maningo, Jose Martin
    Bandala, Argel
    Vicerra, Ryan Rhay
    Dadios, Elmer
    2019 IEEE 11TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2019,
  • [45] Modified moving particle semi-implicit meshless method for incompressible fluids
    Jun Guo
    Zhi Tao
    Journal of Thermal Science, 2004, 13 : 226 - 234
  • [46] ENHANCEMENT OF PRESSURE AND CURVATURE CALCULATION FOR THE MOVING PARTICLE SEMI-IMPLICIT METHOD
    Li, Jiazhi
    Jang, Sunghyon
    Yamaguchi, Akira
    PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, 2018, VOL 8, 2018,
  • [47] A short note on Dynamic Stabilization of Moving Particle Semi-implicit method
    Tsuruta, Naoki
    Khayyer, Abbas
    Gotoh, Hitoshi
    COMPUTERS & FLUIDS, 2013, 82 : 158 - 164
  • [48] Modified Moving Particle Semi-Implicit Meshless Method for Incompressible Fluids
    Jun GUO Zhi TAO Division 402
    JournalofThermalScience, 2004, (03) : 226 - 234
  • [49] Improved Moving Particle Semi-implicit method for multiphase flow with discontinuity
    Wang, Jianqiang
    Zhang, Xiaobing
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 312 - 331
  • [50] On The Laplacian Model for Particle-Based Simulation Using Moving-Particle Semi-Implicit (Mps) Method
    Ng, Khai-ching
    Sheu, Tony Wen-Hann
    Ng, Khai-Ching
    SIXTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2013), 2013, 9067