Moving particle semi-implicit method for fluid simulation with implicitly defined obstacles

被引:0
|
作者
Kanetsuki, Yasutomo [1 ]
Sakamoto, Yasuaki [1 ]
Nakata, Susumu [2 ]
机构
[1] Ritsumeikan Univ, Grad Sch Informat Sci & Engn, Kusatsu, Shiga 5258577, Japan
[2] Ritsumeikan Univ, Coll Informat Sci & Engn, Kusatsu, Shiga 5258577, Japan
关键词
D O I
10.1088/1742-6596/574/1/012079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We developed a particle-based fluid simulation method with obstacles defined in implicit form. Our fluid simulation is based on the Moving Particle Semi-implicit (MPS) method, a typical particle-based algorithm achieving incompressible flow. In general, the particle-based fluid simulation is performed with obstacles that are defined as a set of particles located along the boundaries. We employ the implicit representation for the geometric information of obstacles which requires a new formulation of particle motion at the vicinity of boundaries. The main difficulty of MPS-based simulation with implicit obstacles is the lack of boundary particles that are required for the computation of two quantities: particle number density and particle force determined by pressure field. In our formulation, new definitions of the two quantities giving good estimation of the original ones is developed and incorporated in the MPS algorithm. In addition, we provide a modified algorithm for the construction of discrete linear system specific to the implicit representation for the computation of particle pressure. Our numerical tests show that the proposed approximation techniques provide adequate particle motion at the vicinity of the implicitly defined obstacles.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Comparison of parallel solvers for Moving Particle Semi-Implicit method
    Duan, Guangtao
    Chen, Bin
    ENGINEERING COMPUTATIONS, 2015, 32 (03) : 834 - 862
  • [32] Erratum to: Least squares moving particle semi-implicit method
    Tasuku Tamai
    Seiichi Koshizuka
    Computational Particle Mechanics, 2014, 1 : 441 - 441
  • [33] Numerical simulation of droplet sliding on an inclined surface using moving particle semi-implicit method
    Tsuyoshi Hattori
    Masaharu Sakai
    Shigeru Akaike
    Seiichi Koshizuka
    Computational Particle Mechanics, 2018, 5 : 477 - 491
  • [34] Numerical simulation of ball bearing flow field using the moving particle semi-implicit method
    Wu, Wei
    Wei, Chunhui
    Yuan, Shihua
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2022, 16 (01) : 215 - 228
  • [35] Simulation on Swirl Liquid Sheet Breakup Process Based on Moving Particle Semi-Implicit Method
    Gou W.-J.
    Chen M.-H.
    Zhang S.
    Zheng Y.
    Tuijin Jishu/Journal of Propulsion Technology, 2020, 41 (07): : 1529 - 1535
  • [36] Numerical simulation of fragmentation processes in vapor explosions using Moving Particle Semi-implicit method
    Koshizuka, S
    Ikeda, H
    Oka, Y
    PROCEEDINGS OF THE INTERNATIONAL TOPICAL MEETING ON ADVANCED REACTORS SAFETY, VOLS 1 AND 2, 1997, : 872 - 879
  • [37] Numerical simulation of droplet sliding on an inclined surface using moving particle semi-implicit method
    Hattori, Tsuyoshi
    Sakai, Masaharu
    Akaike, Shigeru
    Koshizuka, Seiichi
    COMPUTATIONAL PARTICLE MECHANICS, 2018, 5 (04) : 477 - 491
  • [38] Numerical simulation of droplet behavior on an inclined plate using the Moving Particle Semi-implicit method
    Hattori, Tsuyoshi
    Koshizuka, Seiichi
    MECHANICAL ENGINEERING JOURNAL, 2019, 6 (05):
  • [39] An accurate and stable alternating directional moving particle semi-implicit method for incompressible flow simulation
    Li, Date
    Zhang, Huaixin
    Yao, Huilan
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (07)
  • [40] Simulation of Nonlinear Heat Conduction in Perforated Material by Improved Moving Particle Semi-Implicit Method
    Wang, Jianqiang
    Zhang, Xiaobing
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2020, 142 (09):