NAVIER-STOKES PROBLEM IN VELOCITY-PRESSURE FORMULATION: NEWTON LINEARIZATION AND CONVERGENCE

被引:0
|
作者
Younes, Ants [1 ]
Jarray, Abdennaceur [1 ]
Bouchiba, Mohamed [2 ]
机构
[1] Tunis El Manar Univ, Fac Sci Tunis, El Manar, Tunisia
[2] Carthage Univ, Natl Inst Appl Sci & Technol, Carthage, Tunisia
关键词
Navier-Stokes equations; Newton's algorithm; convergence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the nonlinear Navier-Stokes problem in velocity-pressure formulation. We construct a sequence of a Newton-linearized problems and we show that the sequence of weak solutions converges towards the solution of the nonlinear one in a quadratic way.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On a potential-velocity formulation of Navier-Stokes equations
    Marner, F.
    Gaskell, P. H.
    Scholle, M.
    PHYSICAL MESOMECHANICS, 2014, 17 (04) : 341 - 348
  • [22] On a potential-velocity formulation of Navier-Stokes equations
    F. Marner
    P. H. Gaskell
    M. Scholle
    Physical Mesomechanics, 2014, 17 : 341 - 348
  • [23] New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations
    Zhang, Guodong
    Dong, Xiaojing
    An, Yongzheng
    Liu, Hong
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2015, 36 (07) : 863 - 872
  • [24] A GEOMETRIC IMPROVEMENT OF THE VELOCITY-PRESSURE LOCAL REGULARITY CRITERION FOR A SUITABLE WEAK SOLUTION TO THE NAVIER-STOKES EQUATIONS
    Neustupa, Jiri
    MATHEMATICA BOHEMICA, 2014, 139 (04): : 685 - 698
  • [25] New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations
    Guodong Zhang
    Xiaojing Dong
    Yongzheng An
    Hong Liu
    Applied Mathematics and Mechanics, 2015, 36 : 863 - 872
  • [26] New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations
    Guodong ZHANG
    Xiaojing DONG
    Yongzheng AN
    Hong LIU
    AppliedMathematicsandMechanics(EnglishEdition), 2015, 36 (07) : 863 - 872
  • [27] A minimum residual projection to build coupled velocity-pressure POD-ROM for incompressible Navier-Stokes equations
    Tallet, A.
    Allery, C.
    Leblond, C.
    Liberge, E.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 909 - 932
  • [28] Spectral element discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes problem
    K. Amoura
    M. Azaïez
    C. Bernardi
    N. Chorfi
    S. Saadi
    Calcolo, 2007, 44 : 165 - 188
  • [29] A posteriori analysis of the Newton method applied to the Navier-Stokes problem
    Dakroub, Jad
    Faddoul, Joanna
    Sayah, Toni
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 63 (1-2) : 411 - 437
  • [30] Boundary conditions for the vorticity velocity formulation of Navier-Stokes equations
    Ni, AL
    AIAA JOURNAL, 1996, 34 (02) : 416 - 418