Nondeficient Sets in Graphs

被引:0
|
作者
Arumugam, S. [1 ,2 ]
Kumar, R. Anantha [3 ]
Rao, S. B. [4 ]
机构
[1] Kalasalingam Univ, Natl Ctr Adv Res Discrete Math, Krishnankoil 626126, India
[2] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
[3] MEPCO Schlenk Engn Coll Autonomous, Sivakasi 626005, India
[4] Univ Hyderabad Campus, CR Rao Adv Inst Math Stat & Comp Sci, Hyderabad 500046, India
关键词
Nondeficient set; nondeficient number; System of distinct representatives; elementary subgraph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph without isolated vertices. A subset U subset of V is called a nondeficient set in G if vertical bar N(S)vertical bar >=vertical bar S vertical bar for all S subset of U. The maximum cardinality of a nondeficient set of G is called the nondeficient number of G and is denoted by nd(G). Any nondeficient set U with vertical bar U vertical bar = nd(G) is called a nd-set of G. In this paper we initiate a study of this parameter and determine the nondeficient number of several families of graphs. We characterize graphs G for which V (G) is a nd-set. Also we determine the value nd(G) in terms of critical independence number of G. Further we obtain lower and upper bounds for nd(G) and characterize graphs which attain the upper bound.
引用
收藏
页码:181 / 195
页数:15
相关论文
共 50 条
  • [41] ON ECCENTRIC SETS OF EDGES IN GRAPHS
    SENGOKU, M
    SHINODA, S
    ABE, T
    IEICE TRANSACTIONS ON COMMUNICATIONS ELECTRONICS INFORMATION AND SYSTEMS, 1991, 74 (04): : 687 - 691
  • [42] Random graphs, sets and tournaments
    Spencer, J
    PAUL ERDOS AND HIS MATHEMATICS II, 2002, 11 : 637 - 648
  • [43] GRAPHS AND TOPOLOGIES ON DISCRETE SETS
    PREA, P
    DISCRETE MATHEMATICS, 1992, 103 (02) : 189 - 197
  • [44] On Independent Sets in Random Graphs
    Coja-Oghlan, Amin
    Efthymiou, Charilaos
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (03) : 436 - 486
  • [45] EDGE DOMINATING SETS IN GRAPHS
    YANNAKAKIS, M
    GAVRIL, F
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 38 (03) : 364 - 372
  • [46] On [j, k]-Sets in Graphs
    Zemir, Mohamed
    Bouchou, Ahmed
    Chellali, Mustapha
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3225 - 3237
  • [47] Augmenting graphs for independent sets
    Alekseev, VE
    Lozin, VV
    DISCRETE APPLIED MATHEMATICS, 2004, 145 (01) : 3 - 10
  • [48] EQUIVALENCE DOMINATING SETS IN GRAPHS
    Arumugam, S.
    Sundarakannan, M.
    UTILITAS MATHEMATICA, 2013, 91 : 231 - 242
  • [49] Dominating Sets and Connected Dominating Sets in Dynamic Graphs
    Hjuler, Niklas
    Italiano, Giuseppe F.
    Parotsidis, Nikos
    Saulpic, David
    36TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2019), 2019,
  • [50] On [j, k]-Sets in Graphs
    Mohamed Zemir
    Ahmed Bouchou
    Mustapha Chellali
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 3225 - 3237