Nondeficient Sets in Graphs

被引:0
|
作者
Arumugam, S. [1 ,2 ]
Kumar, R. Anantha [3 ]
Rao, S. B. [4 ]
机构
[1] Kalasalingam Univ, Natl Ctr Adv Res Discrete Math, Krishnankoil 626126, India
[2] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
[3] MEPCO Schlenk Engn Coll Autonomous, Sivakasi 626005, India
[4] Univ Hyderabad Campus, CR Rao Adv Inst Math Stat & Comp Sci, Hyderabad 500046, India
关键词
Nondeficient set; nondeficient number; System of distinct representatives; elementary subgraph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph without isolated vertices. A subset U subset of V is called a nondeficient set in G if vertical bar N(S)vertical bar >=vertical bar S vertical bar for all S subset of U. The maximum cardinality of a nondeficient set of G is called the nondeficient number of G and is denoted by nd(G). Any nondeficient set U with vertical bar U vertical bar = nd(G) is called a nd-set of G. In this paper we initiate a study of this parameter and determine the nondeficient number of several families of graphs. We characterize graphs G for which V (G) is a nd-set. Also we determine the value nd(G) in terms of critical independence number of G. Further we obtain lower and upper bounds for nd(G) and characterize graphs which attain the upper bound.
引用
收藏
页码:181 / 195
页数:15
相关论文
共 50 条
  • [11] Resolving sets in graphs
    Monsanto, Gerald B.
    Rara, Helen M.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (47): : 862 - 871
  • [12] NEIGHBORHOOD SETS IN GRAPHS
    JAYARAM, SR
    KWONG, YHH
    STRAIGHT, HJ
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1991, 22 (04): : 259 - 268
  • [13] Tutte sets in graphs I: Maximal Tuttle sets and D-Graphs
    Bauer, D.
    Broersma, H. J.
    Morgana, A.
    Schmeichel, E.
    JOURNAL OF GRAPH THEORY, 2007, 55 (04) : 343 - 358
  • [14] The reciprocal sum of primitive nondeficient numbers
    Lichtman, Jared Duker
    JOURNAL OF NUMBER THEORY, 2018, 191 : 104 - 118
  • [15] SCORE SETS IN ORIENTED GRAPHS
    Pirzada, S.
    Naikoo, T. A.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (01) : 107 - 113
  • [16] DOMINATING SETS IN PERFECT GRAPHS
    CORNEIL, DG
    STEWART, LK
    DISCRETE MATHEMATICS, 1990, 86 (1-3) : 145 - 164
  • [17] Eternal dominating sets in graphs
    School of Computing, University of North Florida, Jacksonville, FL 32224-2669, United States
    不详
    J. Comb. Math. Comb. Comp., 2009, (97-111): : 97 - 111
  • [18] DEGREE SETS OF GRAPHS AND HAMILTONIANITY
    CHERNYAK, AA
    DOKLADY AKADEMII NAUK BELARUSI, 1987, 31 (12): : 1065 - 1068
  • [19] On invariant sets in Lagrangian graphs
    XiaoJun Cui
    Lei Zhao
    Science China Mathematics, 2010, 53 : 3095 - 3098
  • [20] Contagious sets in dense graphs
    Freund, Daniel
    Poloczek, Matthias
    Reichman, Daniel
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 68 : 66 - 78