Nondeficient Sets in Graphs

被引:0
|
作者
Arumugam, S. [1 ,2 ]
Kumar, R. Anantha [3 ]
Rao, S. B. [4 ]
机构
[1] Kalasalingam Univ, Natl Ctr Adv Res Discrete Math, Krishnankoil 626126, India
[2] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
[3] MEPCO Schlenk Engn Coll Autonomous, Sivakasi 626005, India
[4] Univ Hyderabad Campus, CR Rao Adv Inst Math Stat & Comp Sci, Hyderabad 500046, India
关键词
Nondeficient set; nondeficient number; System of distinct representatives; elementary subgraph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph without isolated vertices. A subset U subset of V is called a nondeficient set in G if vertical bar N(S)vertical bar >=vertical bar S vertical bar for all S subset of U. The maximum cardinality of a nondeficient set of G is called the nondeficient number of G and is denoted by nd(G). Any nondeficient set U with vertical bar U vertical bar = nd(G) is called a nd-set of G. In this paper we initiate a study of this parameter and determine the nondeficient number of several families of graphs. We characterize graphs G for which V (G) is a nd-set. Also we determine the value nd(G) in terms of critical independence number of G. Further we obtain lower and upper bounds for nd(G) and characterize graphs which attain the upper bound.
引用
收藏
页码:181 / 195
页数:15
相关论文
共 50 条
  • [1] Reconciling Graphs and Sets of Sets
    Mitzenmacher, Michael
    Morgan, Tom
    PODS'18: PROCEEDINGS OF THE 37TH ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2018, : 33 - 47
  • [2] Covering graphs with convex sets and partitioning graphs into convex sets
    Gonzalez, Lucia M.
    Grippo, Luciano N.
    Safe, Martin D.
    dos Santos, Vinicius F.
    INFORMATION PROCESSING LETTERS, 2020, 158
  • [3] Geodetic sets and Steiner sets in graphs
    Tong, Li-Da
    DISCRETE MATHEMATICS, 2009, 309 (12) : 4205 - 4207
  • [4] On dominating sets and independent sets of graphs
    Harant, J
    Pruchnewski, A
    Voigt, M
    COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (06): : 547 - 553
  • [5] On homometric sets in graphs
    Axenovich, Maria
    Oezkahya, Lale
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 55 : 175 - 187
  • [6] Independent sets in graphs
    Dainyak, Aleksandr B.
    Sapozhenko, Aleksandr A.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2016, 26 (06): : 323 - 346
  • [7] Balanced Sets in Graphs
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    Scott, Hamilton
    UTILITAS MATHEMATICA, 2014, 93 : 343 - 356
  • [8] LINKING OF SETS IN GRAPHS
    PYM, JS
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (175P): : 542 - &
  • [9] EFFICIENT SETS IN GRAPHS
    BERNHARD, PJ
    HEDETNIEMI, ST
    JACOBS, DP
    DISCRETE APPLIED MATHEMATICS, 1993, 44 (1-3) : 99 - 108
  • [10] On Gated Sets in Graphs
    Changat, Manoj
    Peterin, Iztok
    Ramachandran, Abisha
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (03): : 509 - 521