HDACs link the DNA damage response, processing of double-strand breaks and autophagy

被引:331
|
作者
Robert, Thomas [1 ]
Vanoli, Fabio [1 ]
Chiolo, Irene [1 ,2 ]
Shubassi, Ghadeer [1 ]
Bernstein, Kara A. [3 ]
Rothstein, Rodney [3 ]
Botrugno, Oronza A. [4 ]
Parazzoli, Dario [5 ]
Oldani, Amanda [5 ]
Minucci, Saverio [4 ,6 ]
Foiani, Marco [1 ,6 ]
机构
[1] Fdn IFOM, I-20139 Milan, Italy
[2] LBNL, Dept Genome Biol, Berkeley, CA 94710 USA
[3] Columbia Univ, Dept Genet & Dev, Med Ctr, New York, NY 10032 USA
[4] European Inst Oncol, I-20139 Milan, Italy
[5] Cogentech, I-20139 Milan, Italy
[6] Univ Milan, DSBB, I-20139 Milan, Italy
关键词
VALPROIC ACID; END RESECTION; CHECKPOINT; ACETYLATION; ACTIVATION; YEAST; SAE2; HELICASE; SGS1; SRS2;
D O I
10.1038/nature09803
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein acetylation is mediated by histone acetyltransferases (HATs) and deacetylases (HDACs), which influence chromatin dynamics, protein turnover and the DNA damage response. ATM and ATR mediate DNA damage checkpoints by sensing double-strand breaks and single-strand-DNA-RFA nucleofilaments, respectively. However, it is unclear how acetylation modulates the DNA damage response. Here we show that HDAC inhibition/ablation specifically counteracts yeast Mec1 (orthologue of human ATR) activation, double-strand-break processing and single-strand-DNA-RFA nucleofilament formation. Moreover, the recombination protein Sae2 (human CtIP) is acetylated and degraded after HDAC inhibition. Two HDACs, Hda1 and Rpd3, and one HAT, Gcn5, have key roles in these processes. We also find that HDAC inhibition triggers Sae2 degradation by promoting autophagy that affects the DNA damage sensitivity of hda1 and rpd3 mutants. Rapamycin, which stimulates autophagy by inhibiting Tor, also causes Sae2 degradation. We propose that Rpd3, Hda1 and Gcn5 control chromosome stability by coordinating the ATR checkpoint and double-strand-break processing with autophagy.
引用
收藏
页码:74 / 79
页数:6
相关论文
共 50 条
  • [41] The cellular control of DNA double-strand breaks
    Scott, Shaun P.
    Pandita, Tej K.
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2006, 99 (06) : 1463 - 1475
  • [42] Role of DNA double-strand breaks in neurogenesis
    Kawabata, Masahiro
    Ogino, Tetuya
    Kawabata, Teruyuki
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2009, 109 : 184P - 184P
  • [43] DNA double-strand breaks and cellular senescence
    Sedelnikova, OA
    Horikawa, I
    Filipski, MJ
    Redon, CE
    Pilch, DR
    Newrock, KM
    Bonner, WM
    Barrett, JC
    MOLECULAR BIOLOGY OF THE CELL, 2002, 13 : 441A - 441A
  • [44] DNA Double-Strand Breaks Come into Focus
    Hopfner, Karl-Peter
    CELL, 2009, 139 (01) : 25 - 27
  • [45] REPAIR OF DOUBLE-STRAND DNA BREAKS IN DROSOPHILA
    DEZZANI, W
    HARRIS, PV
    BOYD, JB
    MUTATION RESEARCH, 1982, 92 (1-2): : 151 - 160
  • [46] The ubiquitin landscape at DNA double-strand breaks
    Messick, Troy E.
    Greenberg, Roger A.
    JOURNAL OF CELL BIOLOGY, 2009, 187 (03): : 319 - 326
  • [47] Regulation and repair of double-strand DNA breaks
    Weaver, DT
    CRITICAL REVIEWS IN EUKARYOTIC GENE EXPRESSION, 1996, 6 (04): : 345 - 375
  • [48] Nucleolar responses to DNA double-strand breaks
    Larsen, Dorthe Helena
    Stucki, Manuel
    NUCLEIC ACIDS RESEARCH, 2016, 44 (02) : 538 - 544
  • [49] Dynamic behavior of DNA topoisomerase IIβ in response to DNA double-strand breaks
    Keiko Morotomi-Yano
    Shinta Saito
    Noritaka Adachi
    Ken-ichi Yano
    Scientific Reports, 8
  • [50] DNA Double-strand Breaks Induce Endoreduplication
    Matsunaga, Sachihiro
    Umeda, Masaaki
    CYTOLOGIA, 2011, 76 (03) : 230 - 230