HDACs link the DNA damage response, processing of double-strand breaks and autophagy

被引:331
|
作者
Robert, Thomas [1 ]
Vanoli, Fabio [1 ]
Chiolo, Irene [1 ,2 ]
Shubassi, Ghadeer [1 ]
Bernstein, Kara A. [3 ]
Rothstein, Rodney [3 ]
Botrugno, Oronza A. [4 ]
Parazzoli, Dario [5 ]
Oldani, Amanda [5 ]
Minucci, Saverio [4 ,6 ]
Foiani, Marco [1 ,6 ]
机构
[1] Fdn IFOM, I-20139 Milan, Italy
[2] LBNL, Dept Genome Biol, Berkeley, CA 94710 USA
[3] Columbia Univ, Dept Genet & Dev, Med Ctr, New York, NY 10032 USA
[4] European Inst Oncol, I-20139 Milan, Italy
[5] Cogentech, I-20139 Milan, Italy
[6] Univ Milan, DSBB, I-20139 Milan, Italy
关键词
VALPROIC ACID; END RESECTION; CHECKPOINT; ACETYLATION; ACTIVATION; YEAST; SAE2; HELICASE; SGS1; SRS2;
D O I
10.1038/nature09803
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein acetylation is mediated by histone acetyltransferases (HATs) and deacetylases (HDACs), which influence chromatin dynamics, protein turnover and the DNA damage response. ATM and ATR mediate DNA damage checkpoints by sensing double-strand breaks and single-strand-DNA-RFA nucleofilaments, respectively. However, it is unclear how acetylation modulates the DNA damage response. Here we show that HDAC inhibition/ablation specifically counteracts yeast Mec1 (orthologue of human ATR) activation, double-strand-break processing and single-strand-DNA-RFA nucleofilament formation. Moreover, the recombination protein Sae2 (human CtIP) is acetylated and degraded after HDAC inhibition. Two HDACs, Hda1 and Rpd3, and one HAT, Gcn5, have key roles in these processes. We also find that HDAC inhibition triggers Sae2 degradation by promoting autophagy that affects the DNA damage sensitivity of hda1 and rpd3 mutants. Rapamycin, which stimulates autophagy by inhibiting Tor, also causes Sae2 degradation. We propose that Rpd3, Hda1 and Gcn5 control chromosome stability by coordinating the ATR checkpoint and double-strand-break processing with autophagy.
引用
收藏
页码:74 / 79
页数:6
相关论文
共 50 条
  • [31] Attenuating the DNA damage response to double-strand breaks restores function in models of CNS neurodegeneration
    Tuxworth, Richard, I
    Taylor, Matthew J.
    Anduaga, Ane Martin
    Hussien-Ali, Alaa
    Chatzimatthaiou, Sotiroula
    Longland, Joanne
    Thompson, Adam M.
    Almutiri, Sharif
    Alifragis, Pavlos
    Kyriacou, Charalambos P.
    Kysela, Boris
    Ahmed, Zubair
    BRAIN COMMUNICATIONS, 2019, 1 (01)
  • [32] Suboptimal extracellular pH values alter DNA damage response to induced double-strand breaks
    Massonneau, Julien
    Ouellet, Camille
    Lucien, Fabrice
    Dubois, Claire M.
    Tyler, Jessica
    Boissonneault, Guylain
    FEBS OPEN BIO, 2018, 8 (03): : 416 - 425
  • [33] Chromatin response to DNA double-strand break damage
    Bao, Yunhe
    EPIGENOMICS, 2011, 3 (03) : 307 - 321
  • [34] Role of DNA-PK in the cellular response to DNA double-strand breaks
    Burma, S
    Chen, DJ
    DNA REPAIR, 2004, 3 (8-9) : 909 - 918
  • [35] Dynamic behavior of DNA topoisomerase IIβ in response to DNA double-strand breaks
    Morotomi-Yano, Keiko
    Saito, Shinta
    Adachi, Noritaka
    Yano, Ken-ichi
    SCIENTIFIC REPORTS, 2018, 8
  • [36] Chromatin Remodeling at DNA Double-Strand Breaks
    Price, Brendan D.
    D'Andrea, Alan D.
    CELL, 2013, 152 (06) : 1344 - 1354
  • [37] Checkpoint Responses to DNA Double-Strand Breaks
    Waterman, David P.
    Haber, James E.
    Smolka, Marcus B.
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 89, 2020, 89 : 103 - 133
  • [39] High salt and DNA double-strand breaks
    Redon, Christophe E.
    Bonner, William M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (51) : 20281 - 20282
  • [40] DNA double-strand breaks induced by γ-ray
    Zhou, Guangming
    Li, Wenjian
    Wang, Jufang
    He, Jing
    Gao, Qingxiang
    Chen, Wei
    Wei, Zengquan
    He Jishu/Nuclear Techniques, 2000, 23 (11): : 776 - 779