PCA-guided search for K-means

被引:41
|
作者
Xu, Qin [1 ]
Ding, Chris [2 ]
Liu, Jinpei [3 ]
Luo, Bin [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
[2] Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA
[3] Anhui Univ, Sch Business, Hefei 730601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
K-means; Principal component analysis; Cluster centroid initialization; Clustering; ALGORITHM;
D O I
10.1016/j.patrec.2014.11.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to the non-convexity of the model formulations, expectation-maximization (EM) type algorithms converge to different local optima with different initializations. Recent discoveries have identified that the global solution of K-means cluster centroids lies in the principal component analysis (PCA) subspace. Based on this insight, we propose PCA-guided effective search for K-means. Because the PCA subspace is much smaller than the original space, searching in the PCA subspace is both more effective and efficient. Extensive experiments on four real world data sets and systematic comparison with previous algorithms demonstrate that our proposed method outperforms the rest as it makes the K-means more effective. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 55
页数:6
相关论文
共 50 条
  • [31] A Novel Approach for Medical Image Segmentation using PCA and K-means Clustering
    Katkar, Juilee
    Baraskar, Trupti
    Mankar, Vijay R.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2015, : 430 - 435
  • [32] K-Means Cloning: Adaptive Spherical K-Means Clustering
    Hedar, Abdel-Rahman
    Ibrahim, Abdel-Monem M.
    Abdel-Hakim, Alaa E.
    Sewisy, Adel A.
    ALGORITHMS, 2018, 11 (10):
  • [33] A New Approach for Movie Recommender System using K-means Clustering and PCA
    Yadav, Vikash
    Shukla, Rati
    Tripathi, Aprna
    Maurya, Anamika
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2021, 80 (02): : 159 - 165
  • [34] Novel L1 PCA informed K-means color quantization
    Jaques, Lorenzo E.
    Depoian, Arthur C., II
    Murrell, Ethan
    Xie, Dong
    Bailey, Colleen P.
    Guturu, Parthasarathy
    BIG DATA IV: LEARNING, ANALYTICS, AND APPLICATIONS, 2022, 12097
  • [35] Local Search Approximation Algorithms for the Spherical k-Means Problem
    Zhang, Dongmei
    Cheng, Yukun
    Li, Min
    Wang, Yishui
    Xu, Dachuan
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2019, 2019, 11640 : 341 - 351
  • [36] Local search approximation algorithms for the k-means problem with penalties
    Dongmei Zhang
    Chunlin Hao
    Chenchen Wu
    Dachuan Xu
    Zhenning Zhang
    Journal of Combinatorial Optimization, 2019, 37 : 439 - 453
  • [37] Optimized K-means Hashing for Approximate Nearest Neighbor Search
    Guo, Qin-Zhen
    Zeng, Zhi
    Zhang, Shuwu
    Zhang, Yuan
    Zhang, Guixuan
    MATERIAL SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING TECHNOLOGY II, 2014, 651-653 : 2168 - 2171
  • [38] In Search of a New Initialization of K-Means Clustering for Color Quantization
    Frackiewicz, Mariusz
    Palus, Henryk
    EIGHTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2015), 2015, 9875
  • [39] Stacked K-means Hashing Quantization for Nearest Neighbor Search
    Chen, Yalin
    Li, Zhiyang
    Shi, Jia
    Liu, Zhaobin
    Qu, Wenyu
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2018,
  • [40] A Local Search Approximation Algorithm for the k-means Problem with Penalties
    Zhang, Dongmei
    Hao, Chunlin
    Wu, Chenchen
    Xu, Dachuan
    Zhang, Zhenning
    COMPUTING AND COMBINATORICS, COCOON 2017, 2017, 10392 : 568 - 574