Local search approximation algorithms for the k-means problem with penalties

被引:0
|
作者
Dongmei Zhang
Chunlin Hao
Chenchen Wu
Dachuan Xu
Zhenning Zhang
机构
[1] Shandong Jianzhu University,School of Computer Science and Technology
[2] Beijing University of Technology,Department of Information and Operations Research, College of Applied Sciences
[3] Tianjin University of Technology,College of Science
[4] Beijing University of Technology,Beijing Institute for Scientific and Engineering Computing
来源
关键词
Approximation algorithm; -means; Penalty; Local search;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the k-means problem with (nonuniform) penalties (k-MPWP) which is a natural generalization of the classic k-means problem. In the k-MPWP, we are given an n-client set D⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {D}} \subset {\mathbb {R}}^d$$\end{document}, a penalty cost pj>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_j>0$$\end{document} for each j∈D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j \in {\mathcal {D}}$$\end{document}, and an integer k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le n$$\end{document}. The goal is to open a center subset F⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F \subset {\mathbb {R}}^d$$\end{document} with |F|≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |F| \le k$$\end{document} and to choose a client subset P⊆D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \subseteq {\mathcal {D}} $$\end{document} as the penalized client set such that the total cost (including the sum of squares of distance for each client in D\P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {D}} \backslash P $$\end{document} to the nearest open center and the sum of penalty cost for each client in P) is minimized. We offer a local search (81+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( 81+ \varepsilon )$$\end{document}-approximation algorithm for the k-MPWP by using single-swap operation. We further improve the above approximation ratio to (25+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( 25+ \varepsilon )$$\end{document} by using multi-swap operation.
引用
收藏
页码:439 / 453
页数:14
相关论文
共 50 条
  • [1] Local search approximation algorithms for the k-means problem with penalties
    Zhang, Dongmei
    Hao, Chunlin
    Wu, Chenchen
    Xu, Dachuan
    Zhang, Zhenning
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (02) : 439 - 453
  • [2] A Local Search Approximation Algorithm for the k-means Problem with Penalties
    Zhang, Dongmei
    Hao, Chunlin
    Wu, Chenchen
    Xu, Dachuan
    Zhang, Zhenning
    [J]. COMPUTING AND COMBINATORICS, COCOON 2017, 2017, 10392 : 568 - 574
  • [3] Approximation Algorithms for Spherical k-Means Problem with Penalties Using Local Search Techniques
    Tian, Xiaoyun
    Gai, Ling
    Xu, Yicheng
    Zhang, Dongmei
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2023, 40 (01)
  • [4] Local Search Approximation Algorithms for the Spherical k-Means Problem
    Zhang, Dongmei
    Cheng, Yukun
    Li, Min
    Wang, Yishui
    Xu, Dachuan
    [J]. ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2019, 2019, 11640 : 341 - 351
  • [5] Approximation algorithms for spherical k-means problem using local search scheme
    Zhang, Dongmei
    Cheng, Yukun
    Li, Min
    Wang, Yishui
    Xu, Dachuan
    [J]. THEORETICAL COMPUTER SCIENCE, 2021, 853 : 65 - 77
  • [6] An approximation algorithm for the spherical k-means problem with outliers by local search
    Wang, Yishui
    Wu, Chenchen
    Zhang, Dongmei
    Zou, Juan
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (04) : 2410 - 2422
  • [7] Local search yields a PTAS for fixed-dimensional k-means problem with penalties
    Fan Yuan
    Da-Chuan Xu
    Dong-Lei Du
    Dong-Mei Zhang
    [J]. Journal of the Operations Research Society of China, 2024, 12 : 351 - 362
  • [8] An approximation algorithm for the spherical k-means problem with outliers by local search
    Yishui Wang
    Chenchen Wu
    Dongmei Zhang
    Juan Zou
    [J]. Journal of Combinatorial Optimization, 2022, 44 : 2410 - 2422
  • [9] Local search yields a PTAS for fixed-dimensional k-means problem with penalties
    Yuan, Fan
    Xu, Da-Chuan
    Du, Dong-Lei
    Zhang, Dong-Mei
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (02) : 351 - 362
  • [10] The provably good parallel seeding algorithms for the k-means problem with penalties
    Li, Min
    Xu, Dachuan
    Zhang, Dongmei
    Zhou, Huiling
    [J]. INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2022, 29 (01) : 158 - 171