Local search approximation algorithms for the k-means problem with penalties

被引:0
|
作者
Dongmei Zhang
Chunlin Hao
Chenchen Wu
Dachuan Xu
Zhenning Zhang
机构
[1] Shandong Jianzhu University,School of Computer Science and Technology
[2] Beijing University of Technology,Department of Information and Operations Research, College of Applied Sciences
[3] Tianjin University of Technology,College of Science
[4] Beijing University of Technology,Beijing Institute for Scientific and Engineering Computing
来源
关键词
Approximation algorithm; -means; Penalty; Local search;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the k-means problem with (nonuniform) penalties (k-MPWP) which is a natural generalization of the classic k-means problem. In the k-MPWP, we are given an n-client set D⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {D}} \subset {\mathbb {R}}^d$$\end{document}, a penalty cost pj>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_j>0$$\end{document} for each j∈D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j \in {\mathcal {D}}$$\end{document}, and an integer k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le n$$\end{document}. The goal is to open a center subset F⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F \subset {\mathbb {R}}^d$$\end{document} with |F|≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |F| \le k$$\end{document} and to choose a client subset P⊆D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \subseteq {\mathcal {D}} $$\end{document} as the penalized client set such that the total cost (including the sum of squares of distance for each client in D\P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {D}} \backslash P $$\end{document} to the nearest open center and the sum of penalty cost for each client in P) is minimized. We offer a local search (81+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( 81+ \varepsilon )$$\end{document}-approximation algorithm for the k-MPWP by using single-swap operation. We further improve the above approximation ratio to (25+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( 25+ \varepsilon )$$\end{document} by using multi-swap operation.
引用
收藏
页码:439 / 453
页数:14
相关论文
共 50 条
  • [32] APPROXIMATION ALGORITHM FOR SPHERICAL k-MEANS PROBLEM WITH PENALTY
    Wu, Chenchen
    Lv, Wei
    Wang, Yujie
    Xu, Dachuan
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2022, 18 (04) : 2277 - 2287
  • [33] An approximation algorithm for the uniform capacitated k-means problem
    Lu Han
    Dachuan Xu
    Donglei Du
    Dongmei Zhang
    [J]. Journal of Combinatorial Optimization, 2022, 44 : 1812 - 1823
  • [34] Algorithms for K-means Clustering Problem with Balancing Constraint
    Wang Shouqiang
    Chi Zengxiao
    Zhan Sheng
    [J]. CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3967 - 3972
  • [35] An approximation algorithm for k-facility location problem with linear penalties using local search scheme
    Wang, Yishui
    Xu, Dachuan
    Du, Donglei
    Wu, Chenchen
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) : 264 - 279
  • [36] An approximation algorithm for k-facility location problem with linear penalties using local search scheme
    Yishui Wang
    Dachuan Xu
    Donglei Du
    Chenchen Wu
    [J]. Journal of Combinatorial Optimization, 2018, 36 : 264 - 279
  • [37] A local search algorithm for k-means with outliers q
    Zhang, Zhen
    Feng, Qilong
    Huang, Junyu
    Guo, Yutian
    Xu, Jinhui
    Wang, Jianxin
    [J]. NEUROCOMPUTING, 2021, 450 : 230 - 241
  • [38] A Hybrid Cuckoo Search and K-Means for Clustering Problem
    Girsang, Abba Suganda
    Yunanto, Ardian
    Aslamiah, Ayu Hidayah
    [J]. 2017 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS), 2017, : 120 - 124
  • [39] An Improved PTAS approximation Algorithm for k-means Clustering Problem
    Wang Shouqiang
    [J]. 2012 2ND INTERNATIONAL CONFERENCE ON UNCERTAINTY REASONING AND KNOWLEDGE ENGINEERING (URKE), 2012, : 90 - 94
  • [40] Local search yields approximation schemes for k-means and k-median in Euclidean and minor-free metrics
    Cohen-Addad, Vincent
    Klein, Philip N.
    Mathieu, Claire
    [J]. 2016 IEEE 57TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2016, : 353 - 364