Convolution Operators on Banach Lattices with Shift-Invariant Norms

被引:1
|
作者
Miheisi, Nazar [1 ]
机构
[1] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Convolution operator; shift-invariant norm; laplace transform;
D O I
10.1007/s00020-010-1817-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact abelian group and let mu be a complex valued regular Borel measure on G. In this paper we consider a generalisation of a class of Banach lattices introduced in Johansson (Syst Control Lett 57:105-111, 2008). We use Laplace transform methods to show that the norm of a convolution operator with symbol mu on such a space is bounded below by the L(infinity) norm of the Fourier-Stieltjes transform of mu. We also show that for any Banach lattice of locally integrable functions on G with a shift-invariant norm, the norm of a convolution operator with symbol mu is bounded above by the total variation of mu.
引用
收藏
页码:287 / 299
页数:13
相关论文
共 50 条
  • [31] Shift-invariant algebras on groups
    Grigoryan, SA
    Tonev, TV
    BANACH ALGEBRAS AND THEIR APPLICATIONS, 2004, 363 : 111 - 127
  • [32] Invariance of shift-invariant spaces
    ZHANG QingYue & SUN WenChang Department of Mathematics and LPMC
    Science China(Mathematics), 2012, 55 (07) : 1395 - 1401
  • [33] Sparse shift-invariant NMF
    Potluru, Vamsi K.
    Plis, Sergey M.
    Calhoun, Vince D.
    2008 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS & INTERPRETATION, 2008, : 69 - +
  • [34] Invariance of shift-invariant spaces
    Zhang QingYue
    Sun WenChang
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) : 1395 - 1401
  • [35] Generalized shift-invariant systems
    Ron, A
    Shen, ZW
    CONSTRUCTIVE APPROXIMATION, 2005, 22 (01) : 1 - 45
  • [36] Invariance of a Shift-Invariant Space
    Aldroubi, Akram
    Cabrelli, Carlos
    Heil, Christopher
    Kornelson, Keri
    Molter, Ursula
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2010, 16 (01) : 60 - 75
  • [37] Invariance of shift-invariant spaces
    QingYue Zhang
    WenChang Sun
    Science China Mathematics, 2012, 55 : 1395 - 1401
  • [38] On shift-invariant sparse coding
    Blumensath, T
    Davies, M
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 1205 - 1212
  • [39] Invariance of a Shift-Invariant Space
    Akram Aldroubi
    Carlos Cabrelli
    Christopher Heil
    Keri Kornelson
    Ursula Molter
    Journal of Fourier Analysis and Applications, 2010, 16 : 60 - 75
  • [40] NOTE ON SHIFT-INVARIANT SETS
    KRENGEL, U
    SUCHESTO.L
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02): : 694 - &