Convolution Operators on Banach Lattices with Shift-Invariant Norms

被引:1
|
作者
Miheisi, Nazar [1 ]
机构
[1] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Convolution operator; shift-invariant norm; laplace transform;
D O I
10.1007/s00020-010-1817-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact abelian group and let mu be a complex valued regular Borel measure on G. In this paper we consider a generalisation of a class of Banach lattices introduced in Johansson (Syst Control Lett 57:105-111, 2008). We use Laplace transform methods to show that the norm of a convolution operator with symbol mu on such a space is bounded below by the L(infinity) norm of the Fourier-Stieltjes transform of mu. We also show that for any Banach lattice of locally integrable functions on G with a shift-invariant norm, the norm of a convolution operator with symbol mu is bounded above by the total variation of mu.
引用
收藏
页码:287 / 299
页数:13
相关论文
共 50 条