Attractor detection and enumeration algorithms for Boolean networks

被引:5
|
作者
Mori, Tomoya [1 ]
Akutsu, Tatsuya [1 ]
机构
[1] Kyoto Univ, Bioinformat Ctr, Inst Chem Res, Kyoto 6110011, Japan
关键词
Boolean network; Singleton attractor; Periodic attractor; Computational complexity; SAT; Nested canalyzing function; SINGLETON ATTRACTOR; STEADY-STATES; FINDING ATTRACTORS; REDUCTION; MODELS; IDENTIFICATION; STABILITY; NUMBER;
D O I
10.1016/j.csbj.2022.05.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Boolean network (BN) is a mathematical model used to represent various biological processes such as gene regulatory networks. The state of a BN is determined from the previous state and eventually reaches a stable state called an attractor. Due to its significance for elucidating the whole system, extensive studies have been conducted on analysis of attractors. However, the problem of detecting an attractor from a given BN has been shown to be NP-hard, and for general BNs, the time complexity of most existing algorithms is not guaranteed to be less than O (2n). Therefore, the computational difficulty of attractor detection has been a big obstacle for analysis of BNs. This review highlights singleton/periodic attractor detection algorithms that have guaranteed computational complexities less than O (2n) time for particular classes of BNs under synchronous update in which the maximum indegree is limited to a constant, each Boolean function is AND or OR of literals, or each Boolean function is given as a nested canalyzing function. We also briefly review practically efficient algorithms for the problem. (c) 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).
引用
收藏
页码:2512 / 2520
页数:9
相关论文
共 50 条
  • [31] An Effective Approach of Attractor Calculation for Boolean Control Networks
    He, Qinbin
    He, Siyue
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2024, 22 (06) : 1827 - 1835
  • [32] A Method for Computing Attractor Fields in Coupled Boolean Networks
    Tovar, Carlos R. P.
    Martins-, David C., Jr.
    Rozante, Luiz C. S.
    Araujo, Eloi
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 315 - 320
  • [33] Implicit pseudo boolean enumeration algorithms for Input Vector Control
    Chopra, K
    Vrudhula, SBK
    41ST DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2004, 2004, : 767 - 772
  • [34] Detection of attractors of large Boolean networks via exhaustive enumeration of appropriate subspaces of the state space
    Nikolaos Berntenis
    Martin Ebeling
    BMC Bioinformatics, 14
  • [35] Principle for performing attractor transits with single control in Boolean networks
    Gao, Bo
    Li, Lixiang
    Peng, Haipeng
    Kurths, Juergen
    Zhang, Wenguang
    Yang, Yixian
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [36] Categorizing Attractor-Effective Canalyzing Functions in Boolean Networks
    Zhao, Yun-Bo
    Dong, Hui
    Ni, Hongjie
    IFAC PAPERSONLINE, 2017, 50 (01): : 14746 - 14751
  • [37] Subnetwork Enumeration Algorithms for Multilayer Networks
    Nurmi, Tarmo
    Kivela, Mikko
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5803 - 5817
  • [38] Detection of attractors of large Boolean networks via exhaustive enumeration of appropriate subspaces of the state space
    Berntenis, Nikolaos
    Ebeling, Martin
    BMC BIOINFORMATICS, 2013, 14
  • [39] Attractor analysis of asynchronous Boolean models of signal transduction networks
    Saadatpour, Assieh
    Albert, Istvan
    Albert, Reka
    JOURNAL OF THEORETICAL BIOLOGY, 2010, 266 (04) : 641 - 656
  • [40] Attractor Dynamics Driven by Interactivity in Boolean Recurrent Neural Networks
    Cabessa, Jeremie
    Villa, Alessandro E. P.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT I, 2016, 9886 : 115 - 122