Principle for performing attractor transits with single control in Boolean networks

被引:23
|
作者
Gao, Bo [1 ,2 ,3 ]
Li, Lixiang [2 ]
Peng, Haipeng [2 ]
Kurths, Juergen [4 ]
Zhang, Wenguang [5 ]
Yang, Yixian [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Informat Secur Ctr, Beijing 100876, Peoples R China
[3] Inner Mongolia Univ Finance & Econ, Sch Comp Informat Management, Hohhot 010051, Peoples R China
[4] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[5] Inner Mongolia Agr Univ, Coll Anim Sci, Hohhot 010018, Peoples R China
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 06期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Algebraic approaches - Boolean Networks - Control sequences - Dictyostelium discoideum - Gene Regulation Network - Protein-nucleic acid interaction - Semi-tensor product - State transition Matrix;
D O I
10.1103/PhysRevE.88.062706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an algebraic approach to reveal attractor transitions in Boolean networks under single control based on the recently developed matrix semitensor product theory. In this setting, the reachability of attractors is estimated by the state transition matrices. We then propose procedures that compute the shortest control sequence and the result of each step of input (control) exactly. The general derivation is exemplified by numerical simulations for two kinds of gene regulation networks, the protein-nucleic acid interactions network and the cAMP receptor of Dictyostelium discoideum network.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Maximum Principle for Single-Input Boolean Control Networks
    Laschov, Dmitriy
    Margaliot, Michael
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (04) : 913 - 917
  • [2] An Effective Approach of Attractor Calculation for Boolean Control Networks
    He, Qinbin
    He, Siyue
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2024, 22 (06) : 1827 - 1835
  • [3] Exploring attractor bifurcations in Boolean networks
    Nikola Beneš
    Luboš Brim
    Jakub Kadlecaj
    Samuel Pastva
    David Šafránek
    BMC Bioinformatics, 23
  • [4] Attractor stability in nonuniform Boolean networks
    Kuhlman, Chris J.
    Mortveit, Henning S.
    THEORETICAL COMPUTER SCIENCE, 2014, 559 : 20 - 33
  • [5] Exploring attractor bifurcations in Boolean networks
    Benes, Nikola
    Brim, Lubos
    Kadlecaj, Jakub
    Pastva, Samuel
    Safranek, David
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [6] pystablemotifs: Python']Python library for attractor identification and control in Boolean networks
    Rozum, Jordan C.
    Deritei, David
    Park, Kyu Hyong
    Zanudo, Jorge Gomez Tejeda
    Albert, Reka
    BIOINFORMATICS, 2022, 38 (05) : 1465 - 1466
  • [7] Integer Programming-Based Methods for Attractor Detection and Control of Boolean Networks
    Akutsu, Tatsuya
    Hayashida, Morihiro
    Tamura, Takeyuki
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 5610 - 5617
  • [8] On Attractor Detection and Optimal Control of Deterministic Generalized Asynchronous Random Boolean Networks
    Giang, Trinh Van
    Hiraishi, Kunihiko
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (03) : 1794 - 1806
  • [9] Integer Programming-Based Approach to Attractor Detection and Control of Boolean Networks
    Akutsu, Tatsuya
    Zhao, Yang
    Hayashida, Morihiro
    Tamura, Takeyuki
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2012, E95D (12): : 2960 - 2970
  • [10] Attractor detection and enumeration algorithms for Boolean networks
    Mori, Tomoya
    Akutsu, Tatsuya
    Computational and Structural Biotechnology Journal, 2022, 20 : 2512 - 2520