Principle for performing attractor transits with single control in Boolean networks

被引:23
|
作者
Gao, Bo [1 ,2 ,3 ]
Li, Lixiang [2 ]
Peng, Haipeng [2 ]
Kurths, Juergen [4 ]
Zhang, Wenguang [5 ]
Yang, Yixian [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Informat Secur Ctr, Beijing 100876, Peoples R China
[3] Inner Mongolia Univ Finance & Econ, Sch Comp Informat Management, Hohhot 010051, Peoples R China
[4] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[5] Inner Mongolia Agr Univ, Coll Anim Sci, Hohhot 010018, Peoples R China
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 06期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Algebraic approaches - Boolean Networks - Control sequences - Dictyostelium discoideum - Gene Regulation Network - Protein-nucleic acid interaction - Semi-tensor product - State transition Matrix;
D O I
10.1103/PhysRevE.88.062706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an algebraic approach to reveal attractor transitions in Boolean networks under single control based on the recently developed matrix semitensor product theory. In this setting, the reachability of attractors is estimated by the state transition matrices. We then propose procedures that compute the shortest control sequence and the result of each step of input (control) exactly. The general derivation is exemplified by numerical simulations for two kinds of gene regulation networks, the protein-nucleic acid interactions network and the cAMP receptor of Dictyostelium discoideum network.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Identification of predictors of Boolean networks from observed attractor states
    Yue, Jumei
    Yan, Yongyi
    Chen, Zengqiang
    Jin, Xin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (11) : 3848 - 3864
  • [32] Exploring Observability of Attractor Cycles in Boolean Networks for Biomarker Detection
    Qiu, Yushan
    Huang, Yulong
    Tan, Shaobo
    Li, Dongqi
    Van der Zup-Tan, Ada Chaeli
    Borchert, Glen M.
    Jiang, Hao
    Huang, Jingshan
    IEEE ACCESS, 2019, 7 : 127745 - 127753
  • [33] Architecture of attractor neural networks performing cognitive fast scanning
    Amit, Daniel J.
    Sagi, D.
    Usher, M.
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1990, 1 (02) : 189 - 216
  • [34] The maximal coordination principle in regulatory Boolean networks
    Poindron, Alexis
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2024, 142
  • [35] Fault detection problems for Boolean networks and Boolean control networks
    Ettore, Fornasini
    Elena, Valcher Maria
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 1 - 8
  • [36] Attractor landscapes in Boolean networks with firing memory: a theoretical study applied to genetic networks
    Eric Goles
    Fabiola Lobos
    Gonzalo A. Ruz
    Sylvain Sené
    Natural Computing, 2020, 19 : 295 - 319
  • [37] Attractor landscapes in Boolean networks with firing memory: a theoretical study applied to genetic networks
    Goles, Eric
    Lobos, Fabiola
    Ruz, Gonzalo A.
    Sene, Sylvain
    NATURAL COMPUTING, 2020, 19 (02) : 295 - 319
  • [38] Designability of Multi-Attractor Boolean Networks with a Fixed Network Structure
    Azuma, Shun-ichi
    Yoshida, Takahiro
    Sugie, Toshiharu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (01): : 423 - 425
  • [39] Improving BDD-based attractor detection for synchronous Boolean networks
    Yuan, Qixia
    Qu, Hongyang
    Pang, Jun
    Mizera, Andrzej
    SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (08)
  • [40] Improving BDD-based attractor detection for synchronous Boolean networks
    Qixia YUAN
    Hongyang QU
    Jun PANG
    Andrzej MIZERA
    ScienceChina(InformationSciences), 2016, 59 (08) : 7 - 22