Principle for performing attractor transits with single control in Boolean networks

被引:23
|
作者
Gao, Bo [1 ,2 ,3 ]
Li, Lixiang [2 ]
Peng, Haipeng [2 ]
Kurths, Juergen [4 ]
Zhang, Wenguang [5 ]
Yang, Yixian [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Informat Secur Ctr, Beijing 100876, Peoples R China
[3] Inner Mongolia Univ Finance & Econ, Sch Comp Informat Management, Hohhot 010051, Peoples R China
[4] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[5] Inner Mongolia Agr Univ, Coll Anim Sci, Hohhot 010018, Peoples R China
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 06期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Algebraic approaches - Boolean Networks - Control sequences - Dictyostelium discoideum - Gene Regulation Network - Protein-nucleic acid interaction - Semi-tensor product - State transition Matrix;
D O I
10.1103/PhysRevE.88.062706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an algebraic approach to reveal attractor transitions in Boolean networks under single control based on the recently developed matrix semitensor product theory. In this setting, the reachability of attractors is estimated by the state transition matrices. We then propose procedures that compute the shortest control sequence and the result of each step of input (control) exactly. The general derivation is exemplified by numerical simulations for two kinds of gene regulation networks, the protein-nucleic acid interactions network and the cAMP receptor of Dictyostelium discoideum network.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Improving BDD-based attractor detection for synchronous Boolean networks
    Qixia Yuan
    Hongyang Qu
    Jun Pang
    Andrzej Mizera
    Science China Information Sciences, 2016, 59
  • [42] An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks
    Cabessa, Jeremie
    Villa, Alessandro E. P.
    PLOS ONE, 2014, 9 (04):
  • [43] ON THE OPTIMAL CONTROL OF BOOLEAN CONTROL NETWORKS
    Zhu, Qunxi
    Liu, Yang
    Lu, Jianquan
    Cao, Jinde
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) : 1321 - 1341
  • [44] Optimal Control of Boolean Control Networks
    Fornasini, Ettore
    Valcher, Maria Elena
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (05) : 1258 - 1270
  • [45] Towards Intelligent Biological Control: Controlling Boolean Networks with Boolean Networks
    Taou, Nadia S.
    Corne, David W.
    Lones, Michael A.
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2016, PT I, 2016, 9597 : 351 - 362
  • [46] On the Full Control of Boolean Networks
    Paul, Soumya
    Pang, Jun
    Su, Cui
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY (CMSB 2018), 2018, 11095 : 313 - 317
  • [47] ON IDENTIFICATION OF BOOLEAN CONTROL NETWORKS
    Wang, Biao
    Feng, Jun-e
    Cheng, Daizhan
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (03) : 1591 - 1612
  • [48] On detectability of Boolean control networks
    Wang, Biao
    Feng, Jun-e
    Li, Haitao
    Yu, Yongyuan
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2020, 36
  • [49] Observability of Boolean Control Networks
    Guo, Yuqian
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 7743 - 7748
  • [50] On quotients of Boolean control networks
    Li, Rui
    Zhang, Qi
    Chu, Tianguang
    AUTOMATICA, 2021, 125