Full Plant Scale Analysis of Natural Gas Fired Power Plants with Pre-Combustion CO2 Capture and Chemical Looping Reforming (CLR)

被引:12
|
作者
Nazir, Shareq Mohd [1 ]
Bolland, Olav [1 ]
Amini, Shahriar [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7491 Trondheim, Norway
[2] SINTEF Mat & Chem, Trondheim, Norway
关键词
pre-combustion CO2 capture; chemical looping reforming; combined cycle power plants; full plant scale analysis; process integration; GENERATION SYSTEM; COMBINED CYCLES; CARBON CAPTURE; HYDROGEN;
D O I
10.1016/j.egypro.2017.03.1350
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, first of its kind complete plant scale integration of pre-combustion CO2 capture method with Chemical Looping Reforming (CLR) of Natural Gas (NG), Water Gas Shift (WGS) process, CO2 capture and CO2 compression in a combined cycle power plant has been presented. The CLR consisted of oxidation and fuel reactor. The oxidation reactor oxidizes the metal oxygen carrier with compressed air and produces an oxygen depleted air stream (N-2 stream) as by-product. The fuel reactor reforms the NG with the metal oxide in presence of steam to produce syngas. The syngas is further subjected to WGS and CO2 capture using a-MDEA, to prepare a H-2-rich fuel, which is combusted in the Gas Turbine (GT) system. The heat from cooling of process streams in the pre-combustion CO2 capture method, is used to prepare saturated low pressure steam, fraction of which is used in reboiler to regenerate the amine for CO2 capture, and the remainder is expanded in Steam Turbine (ST) to generate power. The power plant is a combined cycle with two GT, two Heat Recovery Steam Generators (HRSG) and one ST. 12% of air entering the GT is used in the oxidation reactor of CLR, and equivalent amount of N-2 stream is compressed and added as diluent in the GT. The overall process was integrated and analysed at full load conditions. The current process has also been compared with Natural Gas Combined Cycle (NGCC) plant without CO2 capture. The net electric efficiency of the power plant with pre-combustion CO2 capture in this study is 43.1%, which is 15.3%-points less than the NGCC plant without capture. Major energy penalty in the process comes from air compressor, the diluent N-2 stream compressor and due to low degree of process integration to avoid complexity. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:2146 / 2155
页数:10
相关论文
共 50 条
  • [41] The oxygen production pre-combustion (OPPC) IGCC plant for efficient power production with CO2 capture
    Arnaiz del Pozo, Carlos
    Cloete, Schalk
    Cloete, Jan Hendrik
    Jimenez Alvaro, Angel
    Amini, Shahriar
    ENERGY CONVERSION AND MANAGEMENT, 2019, 201
  • [42] Comparative potential of natural gas, coal and biomass fired power plant with post - combustion CO2 capture and compression
    Ali, Usman
    Font-Palma, Carolina
    Akram, Muhammad
    Agbonghae, Elvis O.
    Ingham, Derek B.
    Pourkashanian, Mohamed
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 63 : 184 - 193
  • [43] Design optimization of a pre-combustion CO2 capture plant embedding experimental knowledge
    Trapp, Carsten
    Thomaser, Timon
    van Dijk, H. A. J.
    Colonna, Piero
    FUEL, 2015, 157 : 126 - 139
  • [44] CO2 capture from natural gas fired power plants by using membrane technology
    Hägg, MB
    Lindbråthen, A
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (20) : 7668 - 7675
  • [45] Lignite-fired air-blown IGCC systems with pre-combustion CO2 capture
    Giuffrida, Antonio
    Moioli, Stefania
    Romano, Matteo C.
    Lozza, Giovanni
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (06) : 831 - 845
  • [46] Performance and Costs of CO2 Capture at Gas Fired Power Plants
    Smith, Neil
    Miller, Geoff
    Aandi, Indran
    Gadsden, Richard
    Davison, John
    GHGT-11, 2013, 37 : 2443 - 2452
  • [47] Operability of Integrated Gasification Combined Cycle power plant with SEWGS technology for pre-combustion CO2 capture
    Najmi, Bita
    Bolland, Olav
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1986 - 1995
  • [48] A PARAMETRIC STUDY OF MULTI-STAGE CHEMICAL LOOPING COMBUSTION FOR CO2 CAPTURE POWER PLANT
    Hassan, Bilal
    Shamim, Tariq
    Ghoniem, Ahmed F.
    PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2012, VOL 2, 2012, : 273 - 281
  • [49] Effect of Power Plant Capacity on the CAPEX, OPEX, and LCOC of the CO2 Capture Process in Pre-Combustion Applications
    Ashkanani, Husain E.
    Wang, Rui
    Shi, Wei
    Siefert, Nicholas S.
    Thompson, Robert L.
    Smith, Kathryn
    Steckel, Janice A.
    Gamwo, Isaac K.
    Hopkinson, David
    Resnik, Kevin
    Morsi, Badie, I
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2021, 109
  • [50] Chemical-looping Combustion CO2 Ready Gas Power
    Mattisson, Tobias
    Adanez, Juan
    Proell, Tobias
    Kuusik, Rein
    Beal, Corinne
    Assink, Jan
    Snijkers, Frank
    Lyngfelt, Anders
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 1557 - 1564